circuitpython/ports/atmel-samd/peripherals/samd51/clocks.c

481 lines
14 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "peripherals/clocks.h"
#include "hpl_gclk_config.h"
#include "bindings/samd/Clock.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "py/runtime.h"
bool gclk_enabled(uint8_t gclk) {
return GCLK->GENCTRL[gclk].bit.GENEN;
}
void disable_gclk(uint8_t gclk) {
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
GCLK->GENCTRL[gclk].bit.GENEN = false;
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
}
void connect_gclk_to_peripheral(uint8_t gclk, uint8_t peripheral) {
GCLK->PCHCTRL[peripheral].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk);
while(GCLK->SYNCBUSY.reg != 0) {}
}
void disconnect_gclk_from_peripheral(uint8_t gclk, uint8_t peripheral) {
GCLK->PCHCTRL[peripheral].reg = 0;
}
static void enable_clock_generator_sync(uint8_t gclk, uint32_t source, uint16_t divisor, bool sync) {
uint32_t divsel = 0;
// The datasheet says 8 bits and max value of 512, how is that possible?
if (divisor > 255) { // Generator 1 has 16 bits
divsel = GCLK_GENCTRL_DIVSEL;
for (int i = 15; i > 0; i--) {
if (divisor & (1 << i)) {
divisor = i - 1;
break;
}
}
}
GCLK->GENCTRL[gclk].reg = GCLK_GENCTRL_SRC(source) | GCLK_GENCTRL_DIV(divisor) | divsel | GCLK_GENCTRL_OE | GCLK_GENCTRL_GENEN;
if (sync)
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
}
void enable_clock_generator(uint8_t gclk, uint32_t source, uint16_t divisor) {
enable_clock_generator_sync(gclk, source, divisor, true);
}
void disable_clock_generator(uint8_t gclk) {
GCLK->GENCTRL[gclk].reg = 0;
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
}
static void init_clock_source_osculp32k(void) {
// Calibration value is loaded at startup
OSC32KCTRL->OSCULP32K.bit.EN1K = 1;
OSC32KCTRL->OSCULP32K.bit.EN32K = 0;
}
static void init_clock_source_xosc32k(void) {
OSC32KCTRL->XOSC32K.reg = OSC32KCTRL_XOSC32K_ONDEMAND |
OSC32KCTRL_XOSC32K_EN1K |
OSC32KCTRL_XOSC32K_XTALEN |
OSC32KCTRL_XOSC32K_ENABLE |
OSC32KCTRL_XOSC32K_CGM(1);
}
static void init_clock_source_dpll0(void)
{
GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL0].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(5);
OSCCTRL->Dpll[0].DPLLRATIO.reg = OSCCTRL_DPLLRATIO_LDRFRAC(0) | OSCCTRL_DPLLRATIO_LDR(59);
OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_REFCLK(0);
OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE;
while (!(OSCCTRL->Dpll[0].DPLLSTATUS.bit.LOCK || OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY)) {}
}
void clock_init(void) {
// DFLL48M is enabled by default
init_clock_source_osculp32k();
if (board_has_crystal()) {
init_clock_source_xosc32k();
OSC32KCTRL->RTCCTRL.bit.RTCSEL = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K_Val;
} else {
OSC32KCTRL->RTCCTRL.bit.RTCSEL = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K_Val;
}
MCLK->CPUDIV.reg = MCLK_CPUDIV_DIV(1);
enable_clock_generator_sync(0, GCLK_GENCTRL_SRC_DPLL0_Val, 1, false);
enable_clock_generator_sync(1, GCLK_GENCTRL_SRC_DFLL_Val, 1, false);
enable_clock_generator_sync(4, GCLK_GENCTRL_SRC_DPLL0_Val, 1, false);
enable_clock_generator_sync(5, GCLK_GENCTRL_SRC_DFLL_Val, 24, false);
init_clock_source_dpll0();
// Do this after all static clock init so that they aren't used dynamically.
init_dynamic_clocks();
}
static bool clk_enabled(uint8_t clk) {
return GCLK->PCHCTRL[clk].bit.CHEN;
}
static uint8_t clk_get_generator(uint8_t clk) {
return GCLK->PCHCTRL[clk].bit.GEN;
}
static uint8_t generator_get_source(uint8_t gen) {
return GCLK->GENCTRL[gen].bit.SRC;
}
static bool osc_enabled(uint8_t index) {
switch (index) {
case GCLK_SOURCE_XOSC0:
return OSCCTRL->XOSCCTRL[0].bit.ENABLE;
case GCLK_SOURCE_XOSC1:
return OSCCTRL->XOSCCTRL[1].bit.ENABLE;
case GCLK_SOURCE_OSCULP32K:
return true;
case GCLK_SOURCE_XOSC32K:
return OSC32KCTRL->XOSC32K.bit.ENABLE;
case GCLK_SOURCE_DFLL:
return OSCCTRL->DFLLCTRLA.bit.ENABLE;
case GCLK_SOURCE_DPLL0:
return OSCCTRL->Dpll[0].DPLLCTRLA.bit.ENABLE;
case GCLK_SOURCE_DPLL1:
return OSCCTRL->Dpll[1].DPLLCTRLA.bit.ENABLE;
};
return false;
}
static uint32_t osc_get_source(uint8_t index) {
uint8_t dpll_index = index - GCLK_SOURCE_DPLL0;
uint32_t refclk = OSCCTRL->Dpll[dpll_index].DPLLCTRLB.bit.REFCLK;
switch (refclk) {
case 0x0:
return generator_get_source(GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL0 + dpll_index].bit.GEN);
case 0x1:
return GCLK_SOURCE_XOSC32K;
case 0x2:
return GCLK_SOURCE_XOSC0;
case 0x3:
return GCLK_SOURCE_XOSC1;
}
return 0;
}
static uint32_t osc_get_frequency(uint8_t index);
static uint32_t generator_get_frequency(uint8_t gen) {
uint8_t src = GCLK->GENCTRL[gen].bit.SRC;
uint32_t div;
if (GCLK->GENCTRL[gen].bit.DIVSEL) {
div = 1 << (GCLK->GENCTRL[gen].bit.DIV + 1);
} else {
div = GCLK->GENCTRL[gen].bit.DIV;
if (!div)
div = 1;
}
return osc_get_frequency(src) / div;
}
static uint32_t dpll_get_frequency(uint8_t index) {
uint8_t dpll_index = index - GCLK_SOURCE_DPLL0;
uint32_t refclk = OSCCTRL->Dpll[dpll_index].DPLLCTRLB.bit.REFCLK;
uint32_t freq;
switch (refclk) {
case 0x0: // GCLK
freq = generator_get_frequency(GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL0 + dpll_index].bit.GEN);
break;
case 0x1: // XOSC32
freq = 32768;
break;
case 0x2: // XOSC0
case 0x3: // XOSC1
default:
return 0; // unknown
}
return (freq * (OSCCTRL->Dpll[dpll_index].DPLLRATIO.bit.LDR + 1)) +
(freq * OSCCTRL->Dpll[dpll_index].DPLLRATIO.bit.LDRFRAC / 32);
}
static uint32_t osc_get_frequency(uint8_t index) {
switch (index) {
case GCLK_SOURCE_XOSC0:
case GCLK_SOURCE_XOSC1:
return 0; // unknown
case GCLK_SOURCE_OSCULP32K:
case GCLK_SOURCE_XOSC32K:
return 32768;
case GCLK_SOURCE_DFLL:
return 48000000;
case GCLK_SOURCE_DPLL0:
case GCLK_SOURCE_DPLL1:
return dpll_get_frequency(index);
}
return 0;
}
bool clock_get_enabled(uint8_t type, uint8_t index) {
if (type == 0)
return osc_enabled(index);
if (type == 1)
return clk_enabled(index);
if (type == 2)
return SysTick->CTRL & SysTick_CTRL_ENABLE_Msk;
return false;
}
bool clock_get_parent(uint8_t type, uint8_t index, uint8_t *p_type, uint8_t *p_index) {
if (type == 0 && osc_enabled(index)) {
if (index == GCLK_SOURCE_DPLL0 || index == GCLK_SOURCE_DPLL1) {
*p_type = 0;
*p_index = osc_get_source(index);
return true;
}
return false;
}
if (type == 1 && index <= 47 && clk_enabled(index)) {
*p_type = 0;
*p_index = generator_get_source(clk_get_generator(index));
return true;
}
if (type == 2) {
switch (index) {
case 0:
case 1:
*p_type = 0;
*p_index = generator_get_source(0);
return true;
case 2:
*p_type = 0;
switch (OSC32KCTRL->RTCCTRL.bit.RTCSEL) {
case 0:
case 1:
*p_index = GCLK_SOURCE_OSCULP32K;
return true;
case 4:
case 5:
*p_index = GCLK_SOURCE_XOSC32K;
return true;
}
return false;
}
}
return false;
}
uint32_t clock_get_frequency(uint8_t type, uint8_t index) {
if (type == 0) {
return osc_get_frequency(index);
}
if (type == 1 && index <= 47 && clk_enabled(index)) {
return generator_get_frequency(clk_get_generator(index));
}
if (type == 2) {
switch (index) {
case 0:
return clock_get_frequency(0, generator_get_source(0)) / SysTick->LOAD;
case 1:
return clock_get_frequency(0, generator_get_source(0)) / MCLK->CPUDIV.bit.DIV;
case 2:
switch (OSC32KCTRL->RTCCTRL.bit.RTCSEL) {
case 0:
case 4:
return 1024;
case 1:
case 5:
return 32768;
}
}
}
return 0;
}
uint32_t clock_get_calibration(uint8_t type, uint8_t index) {
if (type == 0) {
switch (index) {
case GCLK_SOURCE_OSCULP32K:
return OSC32KCTRL->OSCULP32K.bit.CALIB;
};
}
if (type == 2 && index == 0) {
return SysTick->LOAD + 1;
}
return 0;
}
int clock_set_calibration(uint8_t type, uint8_t index, uint32_t val) {
if (type == 0) {
switch (index) {
case GCLK_SOURCE_OSCULP32K:
if (val > 0x3f)
return -1;
OSC32KCTRL->OSCULP32K.bit.CALIB = val;
return 0;
};
}
if (type == 2 && index == 0) {
if (val < 0x1000 || val > 0x1000000)
return -1;
SysTick->LOAD = val - 1;
return 0;
}
return -2;
}
void save_usb_clock_calibration(void) {
}
#include <instance/can0.h>
#include <instance/can1.h>
#include <instance/i2s.h>
#include <instance/sdhc1.h>
#include <instance/sercom6.h>
#include <instance/sercom7.h>
#include <instance/tcc4.h>
CLOCK_SOURCE(XOSC0);
CLOCK_SOURCE(XOSC1);
CLOCK_SOURCE(GCLKIN);
CLOCK_SOURCE(GCLKGEN1);
CLOCK_SOURCE(OSCULP32K);
CLOCK_SOURCE(XOSC32K);
CLOCK_SOURCE(DFLL);
CLOCK_SOURCE(DPLL0);
CLOCK_SOURCE(DPLL1);
CLOCK_GCLK_(OSCCTRL, DFLL48);
CLOCK_GCLK_(OSCCTRL, FDPLL0);
CLOCK_GCLK_(OSCCTRL, FDPLL1);
CLOCK_GCLK_(OSCCTRL, FDPLL032K); // GCLK_OSCCTRL_FDPLL1_32K, GCLK_SDHC0_SLOW, GCLK_SDHC1_SLOW, GCLK_SERCOM[0..7]_SLOW
CLOCK_GCLK(EIC);
CLOCK_GCLK_(FREQM, MSR);
// 6: GCLK_FREQM_REF
CLOCK_GCLK_(SERCOM0, CORE);
CLOCK_GCLK_(SERCOM1, CORE);
CLOCK(TC0_TC1, 1, 9);
CLOCK_GCLK(USB);
CLOCK_GCLK_(EVSYS, 0);
CLOCK_GCLK_(EVSYS, 1);
CLOCK_GCLK_(EVSYS, 2);
CLOCK_GCLK_(EVSYS, 3);
CLOCK_GCLK_(EVSYS, 4);
CLOCK_GCLK_(EVSYS, 5);
CLOCK_GCLK_(EVSYS, 6);
CLOCK_GCLK_(EVSYS, 7);
CLOCK_GCLK_(EVSYS, 8);
CLOCK_GCLK_(EVSYS, 9);
CLOCK_GCLK_(EVSYS, 10);
CLOCK_GCLK_(EVSYS, 11);
CLOCK_GCLK_(SERCOM2, CORE);
CLOCK_GCLK_(SERCOM3, CORE);
CLOCK(TCC0_TCC1, 1, 25);
CLOCK(TC2_TC3, 1, 26);
CLOCK_GCLK(CAN0);
CLOCK_GCLK(CAN1);
CLOCK(TCC2_TCC3, 1, 29);
CLOCK(TC4_TC5, 1, 30);
CLOCK_GCLK(PDEC);
CLOCK_GCLK(AC);
CLOCK_GCLK(CCL);
CLOCK_GCLK_(SERCOM4, CORE);
CLOCK_GCLK_(SERCOM5, CORE);
CLOCK_GCLK_(SERCOM6, CORE);
CLOCK_GCLK_(SERCOM7, CORE);
CLOCK_GCLK(TCC4);
CLOCK(TC6_TC7, 1, 39);
CLOCK_GCLK(ADC0);
CLOCK_GCLK(ADC1);
CLOCK_GCLK(DAC);
CLOCK_GCLK_(I2S, 0);
CLOCK_GCLK_(I2S, 1);
CLOCK_GCLK(SDHC0);
CLOCK_GCLK(SDHC1);
// 47: GCLK_CM4_TRACE
CLOCK(SYSTICK, 2, 0);
CLOCK(CPU, 2, 1);
CLOCK(RTC, 2, 2);
STATIC const mp_rom_map_elem_t samd_clock_global_dict_table[] = {
CLOCK_ENTRY(XOSC0),
CLOCK_ENTRY(XOSC1),
CLOCK_ENTRY(GCLKIN),
CLOCK_ENTRY(GCLKGEN1),
CLOCK_ENTRY(OSCULP32K),
CLOCK_ENTRY(XOSC32K),
CLOCK_ENTRY(DFLL),
CLOCK_ENTRY(DPLL0),
CLOCK_ENTRY(DPLL1),
CLOCK_ENTRY_(OSCCTRL, DFLL48),
CLOCK_ENTRY_(OSCCTRL, FDPLL0),
CLOCK_ENTRY_(OSCCTRL, FDPLL1),
CLOCK_ENTRY_(OSCCTRL, FDPLL032K),
CLOCK_ENTRY(EIC),
CLOCK_ENTRY_(FREQM, MSR),
CLOCK_ENTRY_(SERCOM0, CORE),
CLOCK_ENTRY_(SERCOM1, CORE),
CLOCK_ENTRY(TC0_TC1),
CLOCK_ENTRY(USB),
CLOCK_ENTRY_(EVSYS, 0),
CLOCK_ENTRY_(EVSYS, 1),
CLOCK_ENTRY_(EVSYS, 2),
CLOCK_ENTRY_(EVSYS, 3),
CLOCK_ENTRY_(EVSYS, 4),
CLOCK_ENTRY_(EVSYS, 5),
CLOCK_ENTRY_(EVSYS, 6),
CLOCK_ENTRY_(EVSYS, 7),
CLOCK_ENTRY_(EVSYS, 8),
CLOCK_ENTRY_(EVSYS, 9),
CLOCK_ENTRY_(EVSYS, 10),
CLOCK_ENTRY_(EVSYS, 11),
CLOCK_ENTRY_(SERCOM2, CORE),
CLOCK_ENTRY_(SERCOM3, CORE),
CLOCK_ENTRY(TCC0_TCC1),
CLOCK_ENTRY(TC2_TC3),
CLOCK_ENTRY(CAN0),
CLOCK_ENTRY(CAN1),
CLOCK_ENTRY(TCC2_TCC3),
CLOCK_ENTRY(TC4_TC5),
CLOCK_ENTRY(PDEC),
CLOCK_ENTRY(AC),
CLOCK_ENTRY(CCL),
CLOCK_ENTRY_(SERCOM4, CORE),
CLOCK_ENTRY_(SERCOM5, CORE),
CLOCK_ENTRY_(SERCOM6, CORE),
CLOCK_ENTRY_(SERCOM7, CORE),
CLOCK_ENTRY(TCC4),
CLOCK_ENTRY(TC6_TC7),
CLOCK_ENTRY(ADC0),
CLOCK_ENTRY(ADC1),
CLOCK_ENTRY(DAC),
CLOCK_ENTRY_(I2S, 0),
CLOCK_ENTRY_(I2S, 1),
CLOCK_ENTRY(SDHC0),
CLOCK_ENTRY(SDHC1),
CLOCK_ENTRY(SYSTICK),
CLOCK_ENTRY(CPU),
CLOCK_ENTRY(RTC),
};
MP_DEFINE_CONST_DICT(samd_clock_globals, samd_clock_global_dict_table);