circuitpython/ports/samd/machine_rtc.c

182 lines
6.3 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Damien P. George
* Copyright (c) 2022 "Robert Hammelrath" <robert@hammelrath.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "shared/timeutils/timeutils.h"
#include "modmachine.h"
#include "py/mphal.h"
#include "sam.h"
#if MICROPY_PY_MACHINE_RTC
typedef struct _machine_rtc_obj_t {
mp_obj_base_t base;
mp_obj_t callback;
} machine_rtc_obj_t;
// Singleton RTC object.
STATIC const machine_rtc_obj_t machine_rtc_obj = {{&machine_rtc_type}};
// Start the RTC Timer.
void machine_rtc_start(bool force) {
#if defined(MCU_SAMD21)
if (RTC->MODE2.CTRL.bit.ENABLE == 0 || force) {
// Enable the 1k Clock
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK8 | GCLK_CLKCTRL_ID_RTC;
RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_SWRST;
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {
}
RTC->MODE2.CTRL.reg =
RTC_MODE2_CTRL_MODE_CLOCK |
RTC_MODE2_CTRL_PRESCALER_DIV1024 |
RTC_MODE2_CTRL_ENABLE;
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {
}
}
#elif defined(MCU_SAMD51)
if (RTC->MODE2.CTRLA.bit.ENABLE == 0 || force) {
RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_SWRST;
while (RTC->MODE2.SYNCBUSY.bit.SWRST) {
}
RTC->MODE2.CTRLA.reg =
RTC_MODE2_CTRLA_MODE_CLOCK |
RTC_MODE2_CTRLA_CLOCKSYNC |
RTC_MODE2_CTRLA_PRESCALER_DIV1024 |
RTC_MODE2_CTRLA_ENABLE;
while (RTC->MODE2.SYNCBUSY.bit.ENABLE) {
}
}
#endif
}
// Get the time from the RTC and put it into a tm struct.
void rtc_gettime(timeutils_struct_time_t *tm) {
tm->tm_year = RTC->MODE2.CLOCK.bit.YEAR + 2000;
tm->tm_mon = RTC->MODE2.CLOCK.bit.MONTH;
tm->tm_mday = RTC->MODE2.CLOCK.bit.DAY;
tm->tm_hour = RTC->MODE2.CLOCK.bit.HOUR;
tm->tm_min = RTC->MODE2.CLOCK.bit.MINUTE;
tm->tm_sec = RTC->MODE2.CLOCK.bit.SECOND;
}
STATIC mp_obj_t machine_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// Check arguments.
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// RTC was already started at boot time. So nothing to do here.
// Return constant object.
return (mp_obj_t)&machine_rtc_obj;
}
STATIC mp_obj_t machine_rtc_datetime_helper(size_t n_args, const mp_obj_t *args) {
// Rtc *rtc = RTC;
if (n_args == 1) {
// Get date and time.
timeutils_struct_time_t tm;
rtc_gettime(&tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(timeutils_calc_weekday(tm.tm_year, tm.tm_mon, tm.tm_mday)),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(0),
};
return mp_obj_new_tuple(8, tuple);
} else {
// Set date and time.
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 8, &items);
uint32_t date =
RTC_MODE2_CLOCK_YEAR(mp_obj_get_int(items[0]) % 100) |
RTC_MODE2_CLOCK_MONTH(mp_obj_get_int(items[1])) |
RTC_MODE2_CLOCK_DAY(mp_obj_get_int(items[2])) |
RTC_MODE2_CLOCK_HOUR(mp_obj_get_int(items[4])) |
RTC_MODE2_CLOCK_MINUTE(mp_obj_get_int(items[5])) |
RTC_MODE2_CLOCK_SECOND(mp_obj_get_int(items[6]));
RTC->MODE2.CLOCK.reg = date;
#if defined(MCU_SAMD21)
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {
}
#elif defined(MCU_SAMD51)
while (RTC->MODE2.SYNCBUSY.bit.CLOCKSYNC) {
}
#endif
return mp_const_none;
}
}
STATIC mp_obj_t machine_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
return machine_rtc_datetime_helper(n_args, args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_rtc_datetime_obj, 1, 2, machine_rtc_datetime);
STATIC mp_obj_t machine_rtc_init(mp_obj_t self_in, mp_obj_t date) {
mp_obj_t args[2] = {self_in, date};
machine_rtc_datetime_helper(2, args);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_rtc_init_obj, machine_rtc_init);
// calibration(cal)
// When the argument is a number in the range [-16 to 15], set the calibration value.
STATIC mp_obj_t machine_rtc_calibration(mp_obj_t self_in, mp_obj_t cal_in) {
int8_t cal = 0;
// Make it negative for a "natural" behavior:
// value > 0: faster, value < 0: slower
cal = -mp_obj_get_int(cal_in);
RTC->MODE2.FREQCORR.reg = (uint8_t)cal;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_rtc_calibration_obj, machine_rtc_calibration);
STATIC const mp_rom_map_elem_t machine_rtc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_rtc_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_datetime), MP_ROM_PTR(&machine_rtc_datetime_obj) },
{ MP_ROM_QSTR(MP_QSTR_calibration), MP_ROM_PTR(&machine_rtc_calibration_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_rtc_locals_dict, machine_rtc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
machine_rtc_type,
MP_QSTR_RTC,
MP_TYPE_FLAG_NONE,
make_new, machine_rtc_make_new,
locals_dict, &machine_rtc_locals_dict
);
#endif // MICROPY_PY_MACHINE_RTC