circuitpython/ports/rp2/mpthreadport.c

156 lines
4.7 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mpthread.h"
#include "pico/stdlib.h"
#include "pico/multicore.h"
#if MICROPY_PY_THREAD
extern uint8_t __StackTop, __StackBottom;
void *core_state[2];
// This will be non-NULL while Python code is execting.
STATIC void *(*core1_entry)(void *) = NULL;
STATIC void *core1_arg = NULL;
STATIC uint32_t *core1_stack = NULL;
STATIC size_t core1_stack_num_words = 0;
// Thread mutex.
STATIC mp_thread_mutex_t atomic_mutex;
uint32_t mp_thread_begin_atomic_section(void) {
if (core1_entry) {
// When both cores are executing, we also need to provide
// full mutual exclusion.
mp_thread_mutex_lock(&atomic_mutex, 1);
// In case this atomic section is for flash access, then
// suspend the other core.
multicore_lockout_start_blocking();
}
return save_and_disable_interrupts();
}
void mp_thread_end_atomic_section(uint32_t state) {
restore_interrupts(state);
if (core1_entry) {
multicore_lockout_end_blocking();
mp_thread_mutex_unlock(&atomic_mutex);
}
}
// Initialise threading support.
void mp_thread_init(void) {
assert(get_core_num() == 0);
mp_thread_mutex_init(&atomic_mutex);
// Allow MICROPY_BEGIN_ATOMIC_SECTION to be invoked from core1.
multicore_lockout_victim_init();
mp_thread_set_state(&mp_state_ctx.thread);
core1_entry = NULL;
}
// Shutdown threading support -- stops the second thread.
void mp_thread_deinit(void) {
assert(get_core_num() == 0);
// Must ensure that core1 is not currently holding the GC lock, otherwise
// it will be terminated while holding the lock.
mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1);
multicore_reset_core1();
core1_entry = NULL;
mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex));
}
void mp_thread_gc_others(void) {
if (core1_entry != NULL) {
// Collect core1's stack if it is active.
gc_collect_root((void **)&core1_stack, 1);
gc_collect_root((void **)&core1_arg, 1);
}
if (get_core_num() == 1) {
// GC running on core1, trace core0's stack.
gc_collect_root((void **)&__StackBottom, (&__StackTop - &__StackBottom) / sizeof(uintptr_t));
}
}
STATIC void core1_entry_wrapper(void) {
// Allow MICROPY_BEGIN_ATOMIC_SECTION to be invoked from core0.
multicore_lockout_victim_init();
if (core1_entry) {
core1_entry(core1_arg);
}
core1_entry = NULL;
// returning from here will loop the core forever (WFI)
}
void mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) {
// Check if core1 is already in use.
if (core1_entry != NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("core1 in use"));
}
core1_entry = entry;
core1_arg = arg;
if (*stack_size == 0) {
*stack_size = 4096; // default stack size
} else if (*stack_size < 2048) {
*stack_size = 2048; // minimum stack size
}
// Round stack size to a multiple of the word size.
core1_stack_num_words = *stack_size / sizeof(uint32_t);
*stack_size = core1_stack_num_words * sizeof(uint32_t);
// Allocate stack.
core1_stack = m_new(uint32_t, core1_stack_num_words);
// Create thread on core1.
multicore_reset_core1();
multicore_launch_core1_with_stack(core1_entry_wrapper, core1_stack, *stack_size);
// Adjust stack_size to provide room to recover from hitting the limit.
*stack_size -= 512;
}
void mp_thread_start(void) {
}
void mp_thread_finish(void) {
}
#endif // MICROPY_PY_THREAD