circuitpython/stm/main.c

680 lines
18 KiB
C
Raw Normal View History

2013-10-12 19:42:20 -04:00
#include <stm32f4xx.h>
#include <stm32f4xx_rcc.h>
#include <stm32f4xx_gpio.h>
#include <stm_misc.h>
2013-10-12 19:42:20 -04:00
#include "std.h"
#include "misc.h"
#include "systick.h"
#include "led.h"
#include "lcd.h"
#include "storage.h"
2013-10-12 19:42:20 -04:00
static void impl02_c_version() {
2013-10-12 19:42:20 -04:00
int x = 0;
while (x < 400) {
int y = 0;
while (y < 400) {
volatile int z = 0;
while (z < 400) {
z = z + 1;
}
y = y + 1;
}
x = x + 1;
}
}
void set_bits(__IO uint32_t *addr, uint32_t shift, uint32_t mask, uint32_t value) {
uint32_t x = *addr;
x &= ~(mask << shift);
x |= (value << shift);
*addr = x;
}
void gpio_init() {
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOAEN;
}
/*
2013-10-12 19:42:20 -04:00
void gpio_pin_af(GPIO_TypeDef *gpio, uint32_t pin, uint32_t af) {
// set the AF bits for the given pin
// pins 0-7 use low word of AFR, pins 8-15 use high word
set_bits(&gpio->AFR[pin >> 3], 4 * (pin & 0x07), 0xf, af);
}
*/
2013-10-12 19:42:20 -04:00
static void mma_init() {
// XXX
2013-10-12 19:42:20 -04:00
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1
//gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
//gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
//gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */);
//gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */);
2013-10-12 19:42:20 -04:00
// get clock speeds
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
// disable the I2C peripheral before we configure it
I2C1->CR1 &= ~I2C_CR1_PE;
// program peripheral input clock
I2C1->CR2 = 4; // no interrupts; 4 MHz (hopefully!) (could go up to 42MHz)
// configure clock control reg
uint32_t freq = rcc_clocks.PCLK1_Frequency / (100000 << 1); // want 100kHz, this is the formula for freq
I2C1->CCR = freq; // standard mode (speed), freq calculated as above
// configure rise time reg
I2C1->TRISE = (rcc_clocks.PCLK1_Frequency / 1000000) + 1; // formula for trise, gives maximum rise time
// enable the I2C peripheral
I2C1->CR1 |= I2C_CR1_PE;
// set START bit in CR1 to generate a start cond!
}
static uint32_t i2c_get_sr() {
2013-10-12 19:42:20 -04:00
// must read SR1 first, then SR2, as the read can clear some flags
uint32_t sr1 = I2C1->SR1;
uint32_t sr2 = I2C1->SR2;
return (sr2 << 16) | sr1;
}
static void mma_restart(uint8_t addr, int write) {
2013-10-12 19:42:20 -04:00
// send start condition
I2C1->CR1 |= I2C_CR1_START;
// wait for BUSY, MSL and SB --> Slave has acknowledged start condition
while ((i2c_get_sr() & 0x00030001) != 0x00030001) {
}
if (write) {
// send address and write bit
I2C1->DR = (addr << 1) | 0;
// wait for BUSY, MSL, ADDR, TXE and TRA
while ((i2c_get_sr() & 0x00070082) != 0x00070082) {
}
} else {
// send address and read bit
I2C1->DR = (addr << 1) | 1;
// wait for BUSY, MSL and ADDR flags
while ((i2c_get_sr() & 0x00030002) != 0x00030002) {
}
}
}
static void mma_start(uint8_t addr, int write) {
2013-10-12 19:42:20 -04:00
// wait until I2C is not busy
while (I2C1->SR2 & I2C_SR2_BUSY) {
}
// do rest of start
mma_restart(addr, write);
}
static void mma_send_byte(uint8_t data) {
2013-10-12 19:42:20 -04:00
// send byte
I2C1->DR = data;
// wait for TRA, BUSY, MSL, TXE and BTF (byte transmitted)
int timeout = 1000000;
while ((i2c_get_sr() & 0x00070084) != 0x00070084) {
if (timeout-- <= 0) {
printf("mma_send_byte timed out!\n");
break;
}
}
}
static uint8_t mma_read_ack() {
2013-10-12 19:42:20 -04:00
// enable ACK of received byte
I2C1->CR1 |= I2C_CR1_ACK;
// wait for BUSY, MSL and RXNE (byte received)
while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
}
// read and return data
uint8_t data = I2C1->DR;
return data;
}
static uint8_t mma_read_nack() {
2013-10-12 19:42:20 -04:00
// disable ACK of received byte (to indicate end of receiving)
I2C1->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ACK);
// last byte should apparently also generate a stop condition
I2C1->CR1 |= I2C_CR1_STOP;
// wait for BUSY, MSL and RXNE (byte received)
while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
}
// read and return data
uint8_t data = I2C1->DR;
return data;
}
static void mma_stop() {
2013-10-12 19:42:20 -04:00
// send stop condition
I2C1->CR1 |= I2C_CR1_STOP;
}
#define PYB_USRSW_PORT (GPIOA)
#define PYB_USRSW_PIN (GPIO_Pin_13)
2013-10-12 19:42:20 -04:00
void sw_init() {
// make it an input with pull-up
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = PYB_USRSW_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(PYB_USRSW_PORT, &GPIO_InitStructure);
2013-10-12 19:42:20 -04:00
}
int sw_get() {
if (PYB_USRSW_PORT->IDR & PYB_USRSW_PIN) {
2013-10-12 19:42:20 -04:00
// pulled high, so switch is not pressed
return 0;
} else {
// pulled low, so switch is pressed
return 1;
}
}
void __fatal_error(const char *msg) {
lcd_print_strn("\nFATAL ERROR:\n", 14);
lcd_print_strn(msg, strlen(msg));
for (;;) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_R2, 0);
sys_tick_delay_ms(150);
led_state(PYB_LED_R1, 0);
led_state(PYB_LED_R2, 1);
sys_tick_delay_ms(150);
2013-10-12 19:42:20 -04:00
}
}
#include "misc.h"
#include "lexer.h"
#include "mpyconfig.h"
#include "parse.h"
#include "compile.h"
#include "runtime.h"
py_obj_t pyb_delay(py_obj_t count) {
sys_tick_delay_ms(rt_get_int(count));
2013-10-12 19:42:20 -04:00
return py_const_none;
}
py_obj_t pyb_led(py_obj_t state) {
led_state(PYB_LED_G1, rt_is_true(state));
2013-10-12 19:42:20 -04:00
return state;
}
py_obj_t pyb_sw() {
if (sw_get()) {
return py_const_true;
} else {
return py_const_false;
}
}
#include "ff.h"
FATFS fatfs0;
#include "nlr.h"
/*
void g(uint i) {
printf("g:%d\n", i);
if (i & 1) {
nlr_jump((void*)(42 + i));
}
}
void f() {
nlr_buf_t nlr;
int i;
for (i = 0; i < 4; i++) {
printf("f:loop:%d:%p\n", i, &nlr);
if (nlr_push(&nlr) == 0) {
// normal
//printf("a:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
g(i);
printf("f:lp:%d:nrm\n", i);
nlr_pop();
} else {
// nlr
//printf("b:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
printf("f:lp:%d:nlr:%d\n", i, (int)nlr.ret_val);
}
}
}
void nlr_test() {
f(1);
}
*/
void fatality() {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_G1, 1);
led_state(PYB_LED_R2, 1);
led_state(PYB_LED_G2, 1);
}
static const char *fresh_boot_py =
"# boot.py -- run on boot-up\n"
"# can run arbitrary Python, but best to keep it minimal\n"
"\n"
"pyb.source_dir('/src')\n"
"pyb.main('main.py')\n"
"#pyb.usb_usr('VCP')\n"
"#pyb.usb_msd(True, 'dual partition')\n"
"#pyb.flush_cache(False)\n"
"#pyb.error_log('error.txt')\n"
;
// get lots of info about the board
static void board_info() {
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
{
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
}
// to print info about memory
{
extern void *_sidata;
extern void *_sdata;
extern void *_edata;
extern void *_sbss;
extern void *_ebss;
extern void *_estack;
extern void *_etext;
extern void *_heap_start;
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_etext=%p\n", &_etext);
printf("_heap_start=%p\n", &_heap_start);
}
// free space on flash
{
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("free=%u\n", (uint)(nclst * fatfs->csize * 512));
}
}
2013-10-12 19:42:20 -04:00
int main() {
// TODO disable JTAG
2013-10-12 19:42:20 -04:00
// basic sub-system init
sys_tick_init();
2013-10-12 19:42:20 -04:00
gpio_init();
led_init();
// turn on LED to indicate bootup
led_state(PYB_LED_G1, 1);
// more sub-system init
2013-10-12 19:42:20 -04:00
sw_init();
lcd_init();
storage_init();
2013-10-12 19:42:20 -04:00
// Python init
qstr_init();
rt_init();
2013-10-12 19:42:20 -04:00
// print a message
printf(" micro py board\n");
// local filesystem init
{
// try to mount the flash
FRESULT res = f_mount(&fatfs0, "0:", 1);
if (res == FR_OK) {
// mount sucessful
} else if (res == FR_NO_FILESYSTEM) {
// no filesystem, so create a fresh one
// LED on to indicate creation of LFS
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
res = f_mkfs("0:", 0, 0);
if (res == FR_OK) {
// success creating fresh LFS
} else {
__fatal_error("could not create LFS");
}
// keep LED on for at least 100ms
sys_tick_wait_at_least(stc, 100);
led_state(PYB_LED_R2, 0);
} else {
__fatal_error("could not access LFS");
}
2013-10-12 19:42:20 -04:00
}
// make sure we have a /boot.py
{
FILINFO fno;
FRESULT res = f_stat("0:/boot.py", &fno);
if (res == FR_OK) {
if (fno.fattrib & AM_DIR) {
// exists as a directory
// TODO handle this case
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
} else {
// exists as a file, good!
}
} else {
// doesn't exist, create fresh file
// LED on to indicate creation of boot.py
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
FIL fp;
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py), &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 100ms
sys_tick_wait_at_least(stc, 100);
led_state(PYB_LED_R2, 0);
}
}
// run /boot.py
if (0) {
FIL fp;
f_open(&fp, "0:/boot.py", FA_READ);
UINT n;
char buf[20];
f_read(&fp, buf, 18, &n);
buf[n + 1] = 0;
printf("read %d\n%s", n, buf);
f_close(&fp);
}
// turn boot-up LED off
led_state(PYB_LED_G1, 0);
2013-10-12 19:42:20 -04:00
/*
for (;;) {
led_state(PYB_LED_G2, 1);
sys_tick_wait_at_least(sys_tick_counter, 500);
led_state(PYB_LED_G2, 0);
sys_tick_wait_at_least(sys_tick_counter, 500);
2013-10-12 19:42:20 -04:00
}
*/
// USB
if (0) {
void usb_init();
usb_init();
}
2013-10-12 19:42:20 -04:00
//printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
//sys_tick_delay_ms(1000);
2013-10-12 19:42:20 -04:00
#if 0
2013-10-12 19:42:20 -04:00
// Python!
if (0) {
2013-10-12 19:42:20 -04:00
//const char *pysrc = "def f():\n x=x+1\nprint(42)\n";
const char *pysrc =
// impl01.py
/*
"x = 0\n"
"while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n";
*/
// impl02.py
/*
2013-10-12 19:42:20 -04:00
"#@micropython.native\n"
"def f():\n"
" x = 0\n"
" while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n"
"f()\n";
*/
2013-10-12 19:42:20 -04:00
/*
"print('in python!')\n"
"x = 0\n"
"while x < 4:\n"
" pyb_led(True)\n"
" pyb_delay(201)\n"
" pyb_led(False)\n"
" pyb_delay(201)\n"
" x = x + 1\n"
"print('press me!')\n"
"while True:\n"
" pyb_led(pyb_sw())\n";
*/
/*
// impl16.py
"@micropython.asm_thumb\n"
"def delay(r0):\n"
" b(loop_entry)\n"
" label(loop1)\n"
" movw(r1, 55999)\n"
" label(loop2)\n"
" subs(r1, r1, 1)\n"
" cmp(r1, 0)\n"
" bgt(loop2)\n"
" subs(r0, r0, 1)\n"
" label(loop_entry)\n"
" cmp(r0, 0)\n"
" bgt(loop1)\n"
"print('in python!')\n"
"@micropython.native\n"
"def flash(n):\n"
" x = 0\n"
" while x < n:\n"
" pyb_led(True)\n"
" delay(249)\n"
" pyb_led(False)\n"
" delay(249)\n"
" x = x + 1\n"
"flash(20)\n";
*/
// impl18.py
/*
"# basic exceptions\n"
"x = 1\n"
"try:\n"
" x.a()\n"
"except:\n"
" print(x)\n";
*/
// impl19.py
"# for loop\n"
"def f():\n"
" for x in range(400):\n"
" for y in range(400):\n"
" for z in range(400):\n"
" pass\n"
"f()\n";
2013-10-12 19:42:20 -04:00
py_lexer_t *lex = py_lexer_from_str_len("<>", pysrc, strlen(pysrc), false);
if (0) {
while (!py_lexer_is_kind(lex, PY_TOKEN_END)) {
py_token_show(py_lexer_cur(lex));
py_lexer_to_next(lex);
sys_tick_delay_ms(1000);
2013-10-12 19:42:20 -04:00
}
} else {
// nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
printf("lex; al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
2013-10-12 19:42:20 -04:00
py_parse_node_t pn = py_parse(lex, 0);
//printf("----------------\n");
printf("pars;al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
2013-10-12 19:42:20 -04:00
//parse_node_show(pn, 0);
py_compile(pn, false);
2013-10-12 19:42:20 -04:00
printf("comp;al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
2013-10-12 19:42:20 -04:00
if (1) {
// execute it!
// add some functions to the python namespace
rt_store_name(qstr_from_str_static("pyb_delay"), rt_make_function_1(pyb_delay));
rt_store_name(qstr_from_str_static("pyb_led"), rt_make_function_1(pyb_led));
rt_store_name(qstr_from_str_static("pyb_sw"), rt_make_function_0(pyb_sw));
py_obj_t module_fun = rt_make_function_from_id(1);
// flash once
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
py_obj_t ret = rt_call_function_0(module_fun);
printf("done! got: ");
py_obj_print(ret);
printf("\n");
nlr_pop();
} else {
// uncaught exception
printf("exception: ");
py_obj_print((py_obj_t)nlr.ret_val);
printf("\n");
}
// flash once
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
2013-10-12 19:42:20 -04:00
sys_tick_delay_ms(1000);
2013-10-12 19:42:20 -04:00
printf("nalloc=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
2013-10-12 19:42:20 -04:00
}
}
}
#endif
// benchmark C version of impl02.py
if (0) {
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
2013-10-12 19:42:20 -04:00
impl02_c_version();
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
2013-10-12 19:42:20 -04:00
}
// MMA testing
if (0) {
printf("1");
mma_init();
printf("2");
mma_start(0x4c, 1);
printf("3");
mma_send_byte(0);
printf("4");
mma_stop();
printf("5");
mma_start(0x4c, 1);
printf("6");
mma_send_byte(0);
printf("7");
mma_restart(0x4c, 0);
for (int i = 0; i <= 0xa; i++) {
int data;
if (i == 0xa) {
data = mma_read_nack();
} else {
data = mma_read_ack();
}
printf(" %02x", data);
}
printf("\n");
mma_start(0x4c, 1);
mma_send_byte(7); // mode
mma_send_byte(1); // active mode
mma_stop();
for (;;) {
sys_tick_delay_ms(500);
2013-10-12 19:42:20 -04:00
mma_start(0x4c, 1);
mma_send_byte(0);
mma_restart(0x4c, 0);
for (int i = 0; i <= 3; i++) {
int data;
if (i == 3) {
data = mma_read_nack();
printf(" %02x\n", data);
} else {
data = mma_read_ack() & 0x3f;
if (data & 0x20) {
data |= 0xc0;
}
printf(" % 2d", data);
}
}
}
}
// SD card testing
if (0) {
//sdio_init();
}
int i = 0;
int n = 0;
uint32_t stc = sys_tick_counter;
2013-10-12 19:42:20 -04:00
for (;;) {
sys_tick_delay_ms(10);
2013-10-12 19:42:20 -04:00
if (sw_get()) {
led_state(PYB_LED_G1, 1);
2013-10-12 19:42:20 -04:00
i = 1 - i;
if (i) {
printf(" angel %05x.\n", n);
//usb_vcp_send("hello!\r\n", 8);
} else {
printf(" mishka %4u.\n", n);
//usb_vcp_send("angel!\r\n", 8);
}
n += 1;
} else {
led_state(PYB_LED_G1, 0);
}
if (sys_tick_has_passed(stc, 500)) {
stc = sys_tick_counter;
led_toggle(PYB_LED_G2);
2013-10-12 19:42:20 -04:00
}
}
return 0;
}