circuitpython/ports/unix/mpbthciport.c

290 lines
7.6 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jim Mussared
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#if MICROPY_PY_BLUETOOTH && (MICROPY_BLUETOOTH_NIMBLE || (MICROPY_BLUETOOTH_BTSTACK && MICROPY_BLUETOOTH_BTSTACK_H4))
#if !MICROPY_PY_THREAD
#error Unix HCI UART requires MICROPY_PY_THREAD
#endif
#include "extmod/modbluetooth.h"
#include "extmod/mpbthci.h"
#include <pthread.h>
#include <unistd.h>
#include <termios.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#define DEBUG_printf(...) // printf(__VA_ARGS__)
#define HCI_TRACE (0)
#define COL_OFF "\033[0m"
#define COL_GREEN "\033[0;32m"
#define COL_BLUE "\033[0;34m"
uint8_t mp_bluetooth_hci_cmd_buf[4 + 256];
STATIC int uart_fd = -1;
// Must be provided by the stack bindings (e.g. mpnimbleport.c or mpbtstackport.c).
extern bool mp_bluetooth_hci_poll(void);
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
// For synchronous mode, we run all BLE stack code inside a scheduled task.
// This task is scheduled periodically (every 1ms) by a background thread.
// Allows the stack to tell us that we should stop trying to schedule.
extern bool mp_bluetooth_hci_active(void);
// Prevent double-enqueuing of the scheduled task.
STATIC volatile bool events_task_is_scheduled = false;
STATIC mp_obj_t run_events_scheduled_task(mp_obj_t none_in) {
(void)none_in;
MICROPY_PY_BLUETOOTH_ENTER
events_task_is_scheduled = false;
MICROPY_PY_BLUETOOTH_EXIT
mp_bluetooth_hci_poll();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(run_events_scheduled_task_obj, run_events_scheduled_task);
#endif // MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
STATIC const useconds_t UART_POLL_INTERVAL_US = 1000;
STATIC pthread_t hci_poll_thread_id;
STATIC void *hci_poll_thread(void *arg) {
(void)arg;
DEBUG_printf("hci_poll_thread: starting\n");
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
events_task_is_scheduled = false;
while (mp_bluetooth_hci_active()) {
MICROPY_PY_BLUETOOTH_ENTER
if (!events_task_is_scheduled) {
events_task_is_scheduled = mp_sched_schedule(MP_OBJ_FROM_PTR(&run_events_scheduled_task_obj), mp_const_none);
}
MICROPY_PY_BLUETOOTH_EXIT
usleep(UART_POLL_INTERVAL_US);
}
#else
// In asynchronous (i.e. ringbuffer) mode, we run the BLE stack directly from the thread.
// This will return false when the stack is shutdown.
while (mp_bluetooth_hci_poll()) {
usleep(UART_POLL_INTERVAL_US);
}
#endif
DEBUG_printf("hci_poll_thread: stopped\n");
return NULL;
}
STATIC int configure_uart(void) {
struct termios toptions;
// Get existing config.
if (tcgetattr(uart_fd, &toptions) < 0) {
DEBUG_printf("Couldn't get term attributes");
return -1;
}
// Raw mode (disable all processing).
cfmakeraw(&toptions);
// 8N1, no parity.
toptions.c_cflag &= ~CSTOPB;
toptions.c_cflag |= CS8;
toptions.c_cflag &= ~PARENB;
// Enable receiver, ignore modem control lines
toptions.c_cflag |= CREAD | CLOCAL;
// Blocking, single-byte reads.
toptions.c_cc[VMIN] = 1;
toptions.c_cc[VTIME] = 0;
// Enable HW RTS/CTS flow control.
toptions.c_iflag &= ~(IXON | IXOFF | IXANY);
toptions.c_cflag |= CRTSCTS;
// 1Mbit (TODO: make this configurable).
speed_t brate = B1000000;
cfsetospeed(&toptions, brate);
cfsetispeed(&toptions, brate);
// Apply immediately.
if (tcsetattr(uart_fd, TCSANOW, &toptions) < 0) {
DEBUG_printf("Couldn't set term attributes");
close(uart_fd);
uart_fd = -1;
return -1;
}
return 0;
}
// HCI UART bindings.
int mp_bluetooth_hci_uart_init(uint32_t port, uint32_t baudrate) {
(void)port;
(void)baudrate;
DEBUG_printf("mp_bluetooth_hci_uart_init (unix)\n");
if (uart_fd != -1) {
DEBUG_printf("mp_bluetooth_hci_uart_init: already active\n");
return 0;
}
char uart_device_name[256] = "/dev/ttyUSB0";
char *path = getenv("MICROPYBTUART");
if (path != NULL) {
strcpy(uart_device_name, path);
}
DEBUG_printf("mp_bluetooth_hci_uart_init: Using HCI UART: %s\n", uart_device_name);
int flags = O_RDWR | O_NOCTTY | O_NONBLOCK;
uart_fd = open(uart_device_name, flags);
if (uart_fd == -1) {
printf("mp_bluetooth_hci_uart_init: Unable to open port %s\n", uart_device_name);
return -1;
}
if (configure_uart()) {
return -1;
}
// Create a thread to run the polling loop.
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_create(&hci_poll_thread_id, &attr, &hci_poll_thread, NULL);
return 0;
}
int mp_bluetooth_hci_uart_deinit(void) {
DEBUG_printf("mp_bluetooth_hci_uart_deinit\n");
if (uart_fd == -1) {
return 0;
}
// Wait for the poll loop to terminate when the state is set to OFF.
pthread_join(hci_poll_thread_id, NULL);
// Close the UART.
close(uart_fd);
uart_fd = -1;
return 0;
}
int mp_bluetooth_hci_uart_set_baudrate(uint32_t baudrate) {
(void)baudrate;
DEBUG_printf("mp_bluetooth_hci_uart_set_baudrate\n");
return 0;
}
int mp_bluetooth_hci_uart_readchar(void) {
// DEBUG_printf("mp_bluetooth_hci_uart_readchar\n");
if (uart_fd == -1) {
return -1;
}
uint8_t c;
ssize_t bytes_read = read(uart_fd, &c, 1);
if (bytes_read == 1) {
#if HCI_TRACE
printf(COL_BLUE "> [% 8ld] RX: %02x" COL_OFF "\n", mp_hal_ticks_ms(), c);
#endif
return c;
} else {
return -1;
}
}
int mp_bluetooth_hci_uart_write(const uint8_t *buf, size_t len) {
// DEBUG_printf("mp_bluetooth_hci_uart_write\n");
if (uart_fd == -1) {
return 0;
}
#if HCI_TRACE
printf(COL_GREEN "< [% 8ld] TX: %02x", mp_hal_ticks_ms(), buf[0]);
for (size_t i = 1; i < len; ++i) {
printf(":%02x", buf[i]);
}
printf(COL_OFF "\n");
#endif
return write(uart_fd, buf, len);
}
// No-op implementations of HCI controller interface.
int mp_bluetooth_hci_controller_init(void) {
return 0;
}
int mp_bluetooth_hci_controller_deinit(void) {
return 0;
}
int mp_bluetooth_hci_controller_sleep_maybe(void) {
return 0;
}
bool mp_bluetooth_hci_controller_woken(void) {
return true;
}
int mp_bluetooth_hci_controller_wakeup(void) {
return 0;
}
#endif // MICROPY_PY_BLUETOOTH && (MICROPY_BLUETOOTH_NIMBLE || (MICROPY_BLUETOOTH_BTSTACK && MICROPY_BLUETOOTH_BTSTACK_H4))