2016-04-19 13:03:26 -04:00
|
|
|
# Stress test for threads using AES encryption routines.
|
|
|
|
#
|
|
|
|
# AES was chosen because it is integer based and inplace so doesn't use the
|
|
|
|
# heap. It is therefore a good test of raw performance and correctness of the
|
|
|
|
# VM/runtime. It can be used to measure threading performance (concurrency is
|
|
|
|
# in principle possible) and correctness (it's non trivial for the encryption/
|
|
|
|
# decryption to give the correct answer).
|
|
|
|
#
|
|
|
|
# The AES code comes first (code originates from a C version authored by D.P.George)
|
|
|
|
# and then the test harness at the bottom. It can be tuned to be more/less
|
2017-05-29 03:08:14 -04:00
|
|
|
# aggressive by changing the amount of data to encrypt, the number of loops and
|
2016-04-19 13:03:26 -04:00
|
|
|
# the number of threads.
|
|
|
|
#
|
|
|
|
# MIT license; Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd
|
|
|
|
|
|
|
|
##################################################################
|
|
|
|
# discrete arithmetic routines, mostly from a precomputed table
|
|
|
|
|
|
|
|
# non-linear, invertible, substitution box
|
2020-03-22 22:26:08 -04:00
|
|
|
# fmt: off
|
2016-04-19 13:03:26 -04:00
|
|
|
aes_s_box_table = bytes((
|
|
|
|
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
|
|
|
|
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
|
|
|
|
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
|
|
|
|
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
|
|
|
|
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
|
|
|
|
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
|
|
|
|
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
|
|
|
|
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
|
|
|
|
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
|
|
|
|
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
|
|
|
|
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
|
|
|
|
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
|
|
|
|
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
|
|
|
|
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
|
|
|
|
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
|
|
|
|
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16,
|
|
|
|
))
|
2020-03-22 22:26:08 -04:00
|
|
|
# fmt: on
|
2016-04-19 13:03:26 -04:00
|
|
|
|
|
|
|
# multiplication of polynomials modulo x^8 + x^4 + x^3 + x + 1 = 0x11b
|
|
|
|
def aes_gf8_mul_2(x):
|
|
|
|
if x & 0x80:
|
2020-03-22 22:26:08 -04:00
|
|
|
return (x << 1) ^ 0x11B
|
2016-04-19 13:03:26 -04:00
|
|
|
else:
|
|
|
|
return x << 1
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
def aes_gf8_mul_3(x):
|
|
|
|
return x ^ aes_gf8_mul_2(x)
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
# non-linear, invertible, substitution box
|
|
|
|
def aes_s_box(a):
|
2020-03-22 22:26:08 -04:00
|
|
|
return aes_s_box_table[a & 0xFF]
|
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
|
|
|
|
# return 0x02^(a-1) in GF(2^8)
|
|
|
|
def aes_r_con(a):
|
|
|
|
ans = 1
|
|
|
|
while a > 1:
|
2020-03-22 22:26:08 -04:00
|
|
|
ans <<= 1
|
2016-04-19 13:03:26 -04:00
|
|
|
if ans & 0x100:
|
2020-03-22 22:26:08 -04:00
|
|
|
ans ^= 0x11B
|
2016-04-19 13:03:26 -04:00
|
|
|
a -= 1
|
|
|
|
return ans
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
##################################################################
|
|
|
|
# basic AES algorithm; see FIPS-197
|
|
|
|
#
|
|
|
|
# Think of it as a pseudo random number generator, with each
|
|
|
|
# symbol in the sequence being a 16 byte block (the state). The
|
|
|
|
# key is a parameter of the algorithm and tells which particular
|
|
|
|
# sequence of random symbols you want. The initial vector, IV,
|
|
|
|
# sets the start of the sequence. The idea of a strong cipher
|
|
|
|
# is that it's very difficult to guess the key even if you know
|
|
|
|
# a large part of the sequence. The basic AES algorithm simply
|
|
|
|
# provides such a sequence. En/de-cryption is implemented here
|
|
|
|
# using OCB, where the sequence is xored against the plaintext.
|
|
|
|
# Care must be taken to (almost) always choose a different IV.
|
|
|
|
|
|
|
|
# all inputs must be size 16
|
|
|
|
def aes_add_round_key(state, w):
|
|
|
|
for i in range(16):
|
|
|
|
state[i] ^= w[i]
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
# combined sub_bytes, shift_rows, mix_columns, add_round_key
|
|
|
|
# all inputs must be size 16
|
|
|
|
def aes_sb_sr_mc_ark(state, w, w_idx, temp):
|
|
|
|
temp_idx = 0
|
|
|
|
for i in range(4):
|
|
|
|
x0 = aes_s_box_table[state[i * 4]]
|
|
|
|
x1 = aes_s_box_table[state[1 + ((i + 1) & 3) * 4]]
|
|
|
|
x2 = aes_s_box_table[state[2 + ((i + 2) & 3) * 4]]
|
|
|
|
x3 = aes_s_box_table[state[3 + ((i + 3) & 3) * 4]]
|
2020-03-22 22:26:08 -04:00
|
|
|
temp[temp_idx] = aes_gf8_mul_2(x0) ^ aes_gf8_mul_3(x1) ^ x2 ^ x3 ^ w[w_idx]
|
2016-04-19 13:03:26 -04:00
|
|
|
temp[temp_idx + 1] = x0 ^ aes_gf8_mul_2(x1) ^ aes_gf8_mul_3(x2) ^ x3 ^ w[w_idx + 1]
|
|
|
|
temp[temp_idx + 2] = x0 ^ x1 ^ aes_gf8_mul_2(x2) ^ aes_gf8_mul_3(x3) ^ w[w_idx + 2]
|
|
|
|
temp[temp_idx + 3] = aes_gf8_mul_3(x0) ^ x1 ^ x2 ^ aes_gf8_mul_2(x3) ^ w[w_idx + 3]
|
|
|
|
w_idx += 4
|
|
|
|
temp_idx += 4
|
|
|
|
for i in range(16):
|
|
|
|
state[i] = temp[i]
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
# combined sub_bytes, shift_rows, add_round_key
|
|
|
|
# all inputs must be size 16
|
|
|
|
def aes_sb_sr_ark(state, w, w_idx, temp):
|
|
|
|
temp_idx = 0
|
|
|
|
for i in range(4):
|
|
|
|
x0 = aes_s_box_table[state[i * 4]]
|
|
|
|
x1 = aes_s_box_table[state[1 + ((i + 1) & 3) * 4]]
|
|
|
|
x2 = aes_s_box_table[state[2 + ((i + 2) & 3) * 4]]
|
|
|
|
x3 = aes_s_box_table[state[3 + ((i + 3) & 3) * 4]]
|
2020-03-22 22:26:08 -04:00
|
|
|
temp[temp_idx] = x0 ^ w[w_idx]
|
2016-04-19 13:03:26 -04:00
|
|
|
temp[temp_idx + 1] = x1 ^ w[w_idx + 1]
|
|
|
|
temp[temp_idx + 2] = x2 ^ w[w_idx + 2]
|
|
|
|
temp[temp_idx + 3] = x3 ^ w[w_idx + 3]
|
|
|
|
w_idx += 4
|
|
|
|
temp_idx += 4
|
|
|
|
for i in range(16):
|
|
|
|
state[i] = temp[i]
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
# take state as input and change it to the next state in the sequence
|
|
|
|
# state and temp have size 16, w has size 16 * (Nr + 1), Nr >= 1
|
|
|
|
def aes_state(state, w, temp, nr):
|
|
|
|
aes_add_round_key(state, w)
|
|
|
|
w_idx = 16
|
|
|
|
for i in range(nr - 1):
|
|
|
|
aes_sb_sr_mc_ark(state, w, w_idx, temp)
|
|
|
|
w_idx += 16
|
|
|
|
aes_sb_sr_ark(state, w, w_idx, temp)
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
# expand 'key' to 'w' for use with aes_state
|
|
|
|
# key has size 4 * Nk, w has size 16 * (Nr + 1), temp has size 16
|
|
|
|
def aes_key_expansion(key, w, temp, nk, nr):
|
|
|
|
for i in range(4 * nk):
|
|
|
|
w[i] = key[i]
|
|
|
|
w_idx = 4 * nk - 4
|
|
|
|
for i in range(nk, 4 * (nr + 1)):
|
|
|
|
t = temp
|
|
|
|
t_idx = 0
|
|
|
|
if i % nk == 0:
|
|
|
|
t[0] = aes_s_box(w[w_idx + 1]) ^ aes_r_con(i // nk)
|
|
|
|
for j in range(1, 4):
|
|
|
|
t[j] = aes_s_box(w[w_idx + (j + 1) % 4])
|
|
|
|
elif nk > 6 and i % nk == 4:
|
|
|
|
for j in range(0, 4):
|
|
|
|
t[j] = aes_s_box(w[w_idx + j])
|
|
|
|
else:
|
|
|
|
t = w
|
|
|
|
t_idx = w_idx
|
|
|
|
w_idx += 4
|
|
|
|
for j in range(4):
|
|
|
|
w[w_idx + j] = w[w_idx + j - 4 * nk] ^ t[t_idx + j]
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
##################################################################
|
|
|
|
# simple use of AES algorithm, using output feedback (OFB) mode
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
class AES:
|
|
|
|
def __init__(self, keysize):
|
|
|
|
if keysize == 128:
|
|
|
|
self.nk = 4
|
|
|
|
self.nr = 10
|
|
|
|
elif keysize == 192:
|
|
|
|
self.nk = 6
|
|
|
|
self.nr = 12
|
|
|
|
else:
|
|
|
|
assert keysize == 256
|
|
|
|
self.nk = 8
|
|
|
|
self.nr = 14
|
|
|
|
|
|
|
|
self.state = bytearray(16)
|
|
|
|
self.w = bytearray(16 * (self.nr + 1))
|
|
|
|
self.temp = bytearray(16)
|
|
|
|
self.state_pos = 16
|
|
|
|
|
|
|
|
def set_key(self, key):
|
|
|
|
aes_key_expansion(key, self.w, self.temp, self.nk, self.nr)
|
|
|
|
self.state_pos = 16
|
|
|
|
|
|
|
|
def set_iv(self, iv):
|
|
|
|
for i in range(16):
|
|
|
|
self.state[i] = iv[i]
|
2020-03-22 22:26:08 -04:00
|
|
|
self.state_pos = 16
|
2016-04-19 13:03:26 -04:00
|
|
|
|
|
|
|
def get_some_state(self, n_needed):
|
|
|
|
if self.state_pos >= 16:
|
|
|
|
aes_state(self.state, self.w, self.temp, self.nr)
|
|
|
|
self.state_pos = 0
|
|
|
|
n = 16 - self.state_pos
|
|
|
|
if n > n_needed:
|
|
|
|
n = n_needed
|
|
|
|
return n
|
|
|
|
|
|
|
|
def apply_to(self, data):
|
|
|
|
idx = 0
|
|
|
|
n = len(data)
|
|
|
|
while n > 0:
|
|
|
|
ln = self.get_some_state(n)
|
|
|
|
n -= ln
|
|
|
|
for i in range(ln):
|
|
|
|
data[idx + i] ^= self.state[self.state_pos + i]
|
|
|
|
idx += ln
|
|
|
|
self.state_pos += n
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
##################################################################
|
|
|
|
# test code
|
|
|
|
|
|
|
|
try:
|
|
|
|
import utime as time
|
|
|
|
except ImportError:
|
|
|
|
import time
|
|
|
|
import _thread
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
class LockedCounter:
|
|
|
|
def __init__(self):
|
|
|
|
self.lock = _thread.allocate_lock()
|
|
|
|
self.value = 0
|
|
|
|
|
|
|
|
def add(self, val):
|
|
|
|
self.lock.acquire()
|
|
|
|
self.value += val
|
|
|
|
self.lock.release()
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2016-04-19 13:03:26 -04:00
|
|
|
count = LockedCounter()
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2021-05-08 04:36:27 -04:00
|
|
|
def thread_entry(n_loop):
|
2016-04-19 13:03:26 -04:00
|
|
|
global count
|
|
|
|
|
|
|
|
aes = AES(256)
|
|
|
|
key = bytearray(256 // 8)
|
|
|
|
iv = bytearray(16)
|
|
|
|
data = bytearray(128)
|
|
|
|
# from now on we don't use the heap
|
|
|
|
|
2021-05-08 04:36:27 -04:00
|
|
|
for loop in range(n_loop):
|
2016-04-19 13:03:26 -04:00
|
|
|
# encrypt
|
|
|
|
aes.set_key(key)
|
|
|
|
aes.set_iv(iv)
|
|
|
|
for i in range(8):
|
|
|
|
aes.apply_to(data)
|
|
|
|
|
|
|
|
# decrypt
|
|
|
|
aes.set_key(key)
|
|
|
|
aes.set_iv(iv)
|
|
|
|
for i in range(8):
|
|
|
|
aes.apply_to(data)
|
|
|
|
|
|
|
|
# verify
|
|
|
|
for i in range(len(data)):
|
|
|
|
assert data[i] == 0
|
|
|
|
|
|
|
|
count.add(1)
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2021-05-08 04:36:27 -04:00
|
|
|
import sys
|
|
|
|
|
|
|
|
if sys.platform == "rp2":
|
|
|
|
n_thread = 1
|
|
|
|
n_loop = 2
|
|
|
|
elif sys.platform in ("esp32", "pyboard"):
|
|
|
|
n_thread = 2
|
|
|
|
n_loop = 2
|
|
|
|
else:
|
|
|
|
n_thread = 20
|
|
|
|
n_loop = 5
|
2016-04-19 13:03:26 -04:00
|
|
|
for i in range(n_thread):
|
2021-05-08 04:36:27 -04:00
|
|
|
_thread.start_new_thread(thread_entry, (n_loop,))
|
|
|
|
thread_entry(n_loop)
|
2016-04-19 13:03:26 -04:00
|
|
|
while count.value < n_thread:
|
2016-05-31 06:54:34 -04:00
|
|
|
time.sleep(1)
|
2021-05-08 04:36:27 -04:00
|
|
|
print("done")
|