512 lines
16 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "drivers/memory/spiflash.h"
#define QSPI_QE_MASK (0x02)
#define USE_WR_DELAY (1)
#define CMD_WRSR (0x01)
#define CMD_WRITE (0x02)
#define CMD_READ (0x03)
#define CMD_RDSR (0x05)
#define CMD_WREN (0x06)
#define CMD_SEC_ERASE (0x20)
#define CMD_RDCR (0x35)
#define CMD_RD_DEVID (0x9f)
#define CMD_CHIP_ERASE (0xc7)
#define CMD_C4READ (0xeb)
// 32 bit addressing commands
#define CMD_WRITE_32 (0x12)
#define CMD_READ_32 (0x13)
#define CMD_SEC_ERASE_32 (0x21)
#define CMD_C4READ_32 (0xec)
#define WAIT_SR_TIMEOUT (1000000)
#define PAGE_SIZE (256) // maximum bytes we can write in one SPI transfer
#define SECTOR_SIZE MP_SPIFLASH_ERASE_BLOCK_SIZE
STATIC void mp_spiflash_acquire_bus(mp_spiflash_t *self) {
const mp_spiflash_config_t *c = self->config;
if (c->bus_kind == MP_SPIFLASH_BUS_QSPI) {
c->bus.u_qspi.proto->ioctl(c->bus.u_qspi.data, MP_QSPI_IOCTL_BUS_ACQUIRE);
}
}
STATIC void mp_spiflash_release_bus(mp_spiflash_t *self) {
const mp_spiflash_config_t *c = self->config;
if (c->bus_kind == MP_SPIFLASH_BUS_QSPI) {
c->bus.u_qspi.proto->ioctl(c->bus.u_qspi.data, MP_QSPI_IOCTL_BUS_RELEASE);
}
}
STATIC void mp_spiflash_write_cmd_data(mp_spiflash_t *self, uint8_t cmd, size_t len, uint32_t data) {
const mp_spiflash_config_t *c = self->config;
if (c->bus_kind == MP_SPIFLASH_BUS_SPI) {
// Note: len/data are unused for standard SPI
mp_hal_pin_write(c->bus.u_spi.cs, 0);
c->bus.u_spi.proto->transfer(c->bus.u_spi.data, 1, &cmd, NULL);
mp_hal_pin_write(c->bus.u_spi.cs, 1);
} else {
c->bus.u_qspi.proto->write_cmd_data(c->bus.u_qspi.data, cmd, len, data);
}
}
STATIC void mp_spiflash_transfer_cmd_addr_data(mp_spiflash_t *self, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src, uint8_t *dest) {
const mp_spiflash_config_t *c = self->config;
if (c->bus_kind == MP_SPIFLASH_BUS_SPI) {
uint8_t buf[5] = {cmd, 0};
uint8_t buff_len = 1 + mp_spi_set_addr_buff(&buf[1], addr);
mp_hal_pin_write(c->bus.u_spi.cs, 0);
c->bus.u_spi.proto->transfer(c->bus.u_spi.data, buff_len, buf, NULL);
if (len && (src != NULL)) {
c->bus.u_spi.proto->transfer(c->bus.u_spi.data, len, src, NULL);
} else if (len && (dest != NULL)) {
c->bus.u_spi.proto->transfer(c->bus.u_spi.data, len, dest, dest);
}
mp_hal_pin_write(c->bus.u_spi.cs, 1);
} else {
if (dest != NULL) {
c->bus.u_qspi.proto->read_cmd_qaddr_qdata(c->bus.u_qspi.data, cmd, addr, len, dest);
} else {
c->bus.u_qspi.proto->write_cmd_addr_data(c->bus.u_qspi.data, cmd, addr, len, src);
}
}
}
STATIC uint32_t mp_spiflash_read_cmd(mp_spiflash_t *self, uint8_t cmd, size_t len) {
const mp_spiflash_config_t *c = self->config;
if (c->bus_kind == MP_SPIFLASH_BUS_SPI) {
uint32_t buf;
mp_hal_pin_write(c->bus.u_spi.cs, 0);
c->bus.u_spi.proto->transfer(c->bus.u_spi.data, 1, &cmd, NULL);
c->bus.u_spi.proto->transfer(c->bus.u_spi.data, len, (void*)&buf, (void*)&buf);
mp_hal_pin_write(c->bus.u_spi.cs, 1);
return buf;
} else {
return c->bus.u_qspi.proto->read_cmd(c->bus.u_qspi.data, cmd, len);
}
}
STATIC void mp_spiflash_read_data(mp_spiflash_t *self, uint32_t addr, size_t len, uint8_t *dest) {
const mp_spiflash_config_t *c = self->config;
uint8_t cmd;
if (c->bus_kind == MP_SPIFLASH_BUS_SPI) {
cmd = MP_SPI_ADDR_IS_32B(addr) ? CMD_READ_32 : CMD_READ;
} else {
cmd = MP_SPI_ADDR_IS_32B(addr) ? CMD_C4READ_32 : CMD_C4READ;
}
mp_spiflash_transfer_cmd_addr_data(self, cmd, addr, len, NULL, dest);
}
STATIC void mp_spiflash_write_cmd(mp_spiflash_t *self, uint8_t cmd) {
mp_spiflash_write_cmd_data(self, cmd, 0, 0);
}
STATIC int mp_spiflash_wait_sr(mp_spiflash_t *self, uint8_t mask, uint8_t val, uint32_t timeout) {
uint8_t sr;
do {
sr = mp_spiflash_read_cmd(self, CMD_RDSR, 1);
if ((sr & mask) == val) {
return 0; // success
}
} while (timeout--);
return -MP_ETIMEDOUT;
}
STATIC int mp_spiflash_wait_wel1(mp_spiflash_t *self) {
return mp_spiflash_wait_sr(self, 2, 2, WAIT_SR_TIMEOUT);
}
STATIC int mp_spiflash_wait_wip0(mp_spiflash_t *self) {
return mp_spiflash_wait_sr(self, 1, 0, WAIT_SR_TIMEOUT);
}
static inline void mp_spiflash_deepsleep_internal(mp_spiflash_t *self, int value) {
mp_spiflash_write_cmd(self, value ? 0xb9 : 0xab); // sleep/wake
}
void mp_spiflash_init(mp_spiflash_t *self) {
self->flags = 0;
if (self->config->bus_kind == MP_SPIFLASH_BUS_SPI) {
mp_hal_pin_write(self->config->bus.u_spi.cs, 1);
mp_hal_pin_output(self->config->bus.u_spi.cs);
self->config->bus.u_spi.proto->ioctl(self->config->bus.u_spi.data, MP_SPI_IOCTL_INIT);
} else {
self->config->bus.u_qspi.proto->ioctl(self->config->bus.u_qspi.data, MP_QSPI_IOCTL_INIT);
}
mp_spiflash_acquire_bus(self);
// Ensure SPI flash is out of sleep mode
mp_spiflash_deepsleep_internal(self, 0);
#if defined(CHECK_DEVID)
// Validate device id
uint32_t devid = mp_spiflash_read_cmd(self, CMD_RD_DEVID, 3);
if (devid != CHECK_DEVID) {
return 0;
}
#endif
if (self->config->bus_kind == MP_SPIFLASH_BUS_QSPI) {
// Set QE bit
uint32_t data = (mp_spiflash_read_cmd(self, CMD_RDSR, 1) & 0xff)
| (mp_spiflash_read_cmd(self, CMD_RDCR, 1) & 0xff) << 8;
if (!(data & (QSPI_QE_MASK << 8))) {
data |= QSPI_QE_MASK << 8;
mp_spiflash_write_cmd(self, CMD_WREN);
mp_spiflash_write_cmd_data(self, CMD_WRSR, 2, data);
mp_spiflash_wait_wip0(self);
}
}
mp_spiflash_release_bus(self);
}
void mp_spiflash_deepsleep(mp_spiflash_t *self, int value) {
if (value) {
mp_spiflash_acquire_bus(self);
}
mp_spiflash_deepsleep_internal(self, value);
if (!value) {
mp_spiflash_release_bus(self);
}
}
STATIC int mp_spiflash_erase_block_internal(mp_spiflash_t *self, uint32_t addr) {
// enable writes
mp_spiflash_write_cmd(self, CMD_WREN);
// wait WEL=1
int ret = mp_spiflash_wait_wel1(self);
if (ret != 0) {
return ret;
}
// erase the sector
uint8_t cmd = MP_SPI_ADDR_IS_32B(addr) ? CMD_SEC_ERASE_32 : CMD_SEC_ERASE;
mp_spiflash_transfer_cmd_addr_data(self, cmd, addr, 0, NULL, NULL);
// wait WIP=0
return mp_spiflash_wait_wip0(self);
}
STATIC int mp_spiflash_write_page(mp_spiflash_t *self, uint32_t addr, size_t len, const uint8_t *src) {
// enable writes
mp_spiflash_write_cmd(self, CMD_WREN);
// wait WEL=1
int ret = mp_spiflash_wait_wel1(self);
if (ret != 0) {
return ret;
}
// write the page
uint8_t cmd = MP_SPI_ADDR_IS_32B(addr) ? CMD_WRITE_32 : CMD_WRITE;
mp_spiflash_transfer_cmd_addr_data(self, cmd, addr, len, src, NULL);
// wait WIP=0
return mp_spiflash_wait_wip0(self);
}
/******************************************************************************/
// Interface functions that go direct to the SPI flash device
int mp_spiflash_erase_block(mp_spiflash_t *self, uint32_t addr) {
mp_spiflash_acquire_bus(self);
int ret = mp_spiflash_erase_block_internal(self, addr);
mp_spiflash_release_bus(self);
return ret;
}
void mp_spiflash_read(mp_spiflash_t *self, uint32_t addr, size_t len, uint8_t *dest) {
if (len == 0) {
return;
}
mp_spiflash_acquire_bus(self);
mp_spiflash_read_data(self, addr, len, dest);
mp_spiflash_release_bus(self);
}
int mp_spiflash_write(mp_spiflash_t *self, uint32_t addr, size_t len, const uint8_t *src) {
mp_spiflash_acquire_bus(self);
int ret = 0;
uint32_t offset = addr & (PAGE_SIZE - 1);
while (len) {
size_t rest = PAGE_SIZE - offset;
if (rest > len) {
rest = len;
}
ret = mp_spiflash_write_page(self, addr, rest, src);
if (ret != 0) {
break;
}
len -= rest;
addr += rest;
src += rest;
offset = 0;
}
mp_spiflash_release_bus(self);
return ret;
}
/******************************************************************************/
// Interface functions that use the cache
void mp_spiflash_cached_read(mp_spiflash_t *self, uint32_t addr, size_t len, uint8_t *dest) {
if (len == 0) {
return;
}
mp_spiflash_acquire_bus(self);
mp_spiflash_cache_t *cache = self->config->cache;
if (cache->user == self && cache->block != 0xffffffff) {
uint32_t bis = addr / SECTOR_SIZE;
uint32_t bie = (addr + len - 1) / SECTOR_SIZE;
if (bis <= cache->block && cache->block <= bie) {
// Read straddles current buffer
size_t rest = 0;
if (bis < cache->block) {
// Read direct from flash for first part
rest = cache->block * SECTOR_SIZE - addr;
mp_spiflash_read_data(self, addr, rest, dest);
len -= rest;
dest += rest;
addr += rest;
}
uint32_t offset = addr & (SECTOR_SIZE - 1);
rest = SECTOR_SIZE - offset;
if (rest > len) {
rest = len;
}
memcpy(dest, &cache->buf[offset], rest);
len -= rest;
if (len == 0) {
mp_spiflash_release_bus(self);
return;
}
dest += rest;
addr += rest;
}
}
// Read rest direct from flash
mp_spiflash_read_data(self, addr, len, dest);
mp_spiflash_release_bus(self);
}
STATIC void mp_spiflash_cache_flush_internal(mp_spiflash_t *self) {
#if USE_WR_DELAY
if (!(self->flags & 1)) {
return;
}
self->flags &= ~1;
mp_spiflash_cache_t *cache = self->config->cache;
// Erase sector
int ret = mp_spiflash_erase_block_internal(self, cache->block * SECTOR_SIZE);
if (ret != 0) {
return;
}
// Write
for (int i = 0; i < 16; i += 1) {
uint32_t addr = cache->block * SECTOR_SIZE + i * PAGE_SIZE;
int ret = mp_spiflash_write_page(self, addr, PAGE_SIZE, cache->buf + i * PAGE_SIZE);
if (ret != 0) {
return;
}
}
#endif
}
void mp_spiflash_cache_flush(mp_spiflash_t *self) {
mp_spiflash_acquire_bus(self);
mp_spiflash_cache_flush_internal(self);
mp_spiflash_release_bus(self);
}
STATIC int mp_spiflash_cached_write_part(mp_spiflash_t *self, uint32_t addr, size_t len, const uint8_t *src) {
// Align to 4096 sector
uint32_t offset = addr & 0xfff;
uint32_t sec = addr >> 12;
addr = sec << 12;
// Restriction for now, so we don't need to erase multiple pages
if (offset + len > SECTOR_SIZE) {
printf("mp_spiflash_cached_write_part: len is too large\n");
return -MP_EIO;
}
mp_spiflash_cache_t *cache = self->config->cache;
// Acquire the sector buffer
if (cache->user != self) {
if (cache->user != NULL) {
mp_spiflash_cache_flush(cache->user);
}
cache->user = self;
cache->block = 0xffffffff;
}
if (cache->block != sec) {
// Read sector
#if USE_WR_DELAY
if (cache->block != 0xffffffff) {
mp_spiflash_cache_flush_internal(self);
}
#endif
mp_spiflash_read_data(self, addr, SECTOR_SIZE, cache->buf);
}
#if USE_WR_DELAY
cache->block = sec;
// Just copy to buffer
memcpy(cache->buf + offset, src, len);
// And mark dirty
self->flags |= 1;
#else
uint32_t dirty = 0;
for (size_t i = 0; i < len; ++i) {
if (cache->buf[offset + i] != src[i]) {
if (cache->buf[offset + i] != 0xff) {
// Erase sector
int ret = mp_spiflash_erase_block_internal(self, addr);
if (ret != 0) {
return ret;
}
dirty = 0xffff;
break;
} else {
dirty |= (1 << ((offset + i) >> 8));
}
}
}
cache->block = sec;
// Copy new block into buffer
memcpy(cache->buf + offset, src, len);
// Write sector in pages of 256 bytes
for (size_t i = 0; i < 16; ++i) {
if (dirty & (1 << i)) {
int ret = mp_spiflash_write_page(self, addr + i * PAGE_SIZE, PAGE_SIZE, cache->buf + i * PAGE_SIZE);
if (ret != 0) {
return ret;
}
}
}
#endif
return 0; // success
}
int mp_spiflash_cached_write(mp_spiflash_t *self, uint32_t addr, size_t len, const uint8_t *src) {
uint32_t bis = addr / SECTOR_SIZE;
uint32_t bie = (addr + len - 1) / SECTOR_SIZE;
mp_spiflash_acquire_bus(self);
mp_spiflash_cache_t *cache = self->config->cache;
if (cache->user == self && bis <= cache->block && bie >= cache->block) {
// Write straddles current buffer
uint32_t pre;
uint32_t offset;
if (cache->block * SECTOR_SIZE >= addr) {
pre = cache->block * SECTOR_SIZE - addr;
offset = 0;
} else {
pre = 0;
offset = addr - cache->block * SECTOR_SIZE;
}
// Write buffered part first
uint32_t len_in_buf = len - pre;
len = 0;
if (len_in_buf > SECTOR_SIZE - offset) {
len = len_in_buf - (SECTOR_SIZE - offset);
len_in_buf = SECTOR_SIZE - offset;
}
memcpy(&cache->buf[offset], &src[pre], len_in_buf);
self->flags |= 1; // Mark dirty
// Write part before buffer sector
while (pre) {
int rest = pre & (SECTOR_SIZE - 1);
if (rest == 0) {
rest = SECTOR_SIZE;
}
int ret = mp_spiflash_cached_write_part(self, addr, rest, src);
if (ret != 0) {
mp_spiflash_release_bus(self);
return ret;
}
src += rest;
addr += rest;
pre -= rest;
}
src += len_in_buf;
addr += len_in_buf;
// Fall through to write remaining part
}
uint32_t offset = addr & (SECTOR_SIZE - 1);
while (len) {
int rest = SECTOR_SIZE - offset;
if (rest > len) {
rest = len;
}
int ret = mp_spiflash_cached_write_part(self, addr, rest, src);
if (ret != 0) {
mp_spiflash_release_bus(self);
return ret;
}
len -= rest;
addr += rest;
src += rest;
offset = 0;
}
mp_spiflash_release_bus(self);
return 0;
}