circuitpython/py/objint_mpz.c

287 lines
9.5 KiB
C
Raw Normal View History

#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "parsenumbase.h"
#include "obj.h"
#include "mpz.h"
#include "objint.h"
#include "runtime0.h"
#include "runtime.h"
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
STATIC mp_obj_int_t *mp_obj_int_new_mpz(void) {
mp_obj_int_t *o = m_new_obj(mp_obj_int_t);
o->base.type = &mp_type_int;
mpz_init_zero(&o->mpz);
return o;
}
// This routine expects you to pass in a buffer and size (in *buf and buf_size).
// If, for some reason, this buffer is too small, then it will allocate a
// buffer and return the allocated buffer and size in *buf and *buf_size. It
// is the callers responsibility to free this allocated buffer.
//
// The resulting formatted string will be returned from this function and the
// formatted size will be in *fmt_size.
//
// This particular routine should only be called for the mpz representation of the int.
char *mp_obj_int_formatted_impl(char **buf, int *buf_size, int *fmt_size, mp_obj_t self_in,
int base, const char *prefix, char base_char, char comma) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_int));
mp_obj_int_t *self = self_in;
uint needed_size = mpz_as_str_size_formatted(&self->mpz, base, prefix, comma);
if (needed_size > *buf_size) {
*buf = m_new(char, needed_size);
*buf_size = needed_size;
}
char *str = *buf;
*fmt_size = mpz_as_str_inpl(&self->mpz, base, prefix, base_char, comma, str);
return str;
}
bool mp_obj_int_is_positive(mp_obj_t self_in) {
if (MP_OBJ_IS_SMALL_INT(self_in)) {
return MP_OBJ_SMALL_INT_VALUE(self_in) >= 0;
}
mp_obj_int_t *self = self_in;
return !self->mpz.neg;
}
mp_obj_t mp_obj_int_unary_op(int op, mp_obj_t o_in) {
mp_obj_int_t *o = o_in;
switch (op) {
case MP_UNARY_OP_BOOL: return MP_BOOL(!mpz_is_zero(&o->mpz));
case MP_UNARY_OP_POSITIVE: return o_in;
case MP_UNARY_OP_NEGATIVE: { mp_obj_int_t *o2 = mp_obj_int_new_mpz(); mpz_neg_inpl(&o2->mpz, &o->mpz); return o2; }
case MP_UNARY_OP_INVERT: { mp_obj_int_t *o2 = mp_obj_int_new_mpz(); mpz_not_inpl(&o2->mpz, &o->mpz); return o2; }
default: return NULL; // op not supported
}
}
mp_obj_t mp_obj_int_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
const mpz_t *zlhs;
const mpz_t *zrhs;
mpz_t z_int;
mpz_dig_t z_int_dig[MPZ_NUM_DIG_FOR_INT];
// lhs could be a small int (eg small-int + mpz)
if (MP_OBJ_IS_SMALL_INT(lhs_in)) {
mpz_init_fixed_from_int(&z_int, z_int_dig, MPZ_NUM_DIG_FOR_INT, MP_OBJ_SMALL_INT_VALUE(lhs_in));
zlhs = &z_int;
} else if (MP_OBJ_IS_TYPE(lhs_in, &mp_type_int)) {
zlhs = &((mp_obj_int_t*)lhs_in)->mpz;
} else {
// unsupported type
return MP_OBJ_NOT_SUPPORTED;
}
// if rhs is small int, then lhs was not (otherwise mp_binary_op handles it)
if (MP_OBJ_IS_SMALL_INT(rhs_in)) {
mpz_init_fixed_from_int(&z_int, z_int_dig, MPZ_NUM_DIG_FOR_INT, MP_OBJ_SMALL_INT_VALUE(rhs_in));
zrhs = &z_int;
} else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_int)) {
zrhs = &((mp_obj_int_t*)rhs_in)->mpz;
#if MICROPY_ENABLE_FLOAT
} else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_float)) {
return mp_obj_float_binary_op(op, mpz_as_float(zlhs), rhs_in);
} else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_complex)) {
return mp_obj_complex_binary_op(op, mpz_as_float(zlhs), 0, rhs_in);
#endif
} else {
// delegate to generic function to check for extra cases
return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
}
if (0) {
#if MICROPY_ENABLE_FLOAT
} else if (op == MP_BINARY_OP_TRUE_DIVIDE || op == MP_BINARY_OP_INPLACE_TRUE_DIVIDE) {
mp_float_t flhs = mpz_as_float(zlhs);
mp_float_t frhs = mpz_as_float(zrhs);
return mp_obj_new_float(flhs / frhs);
#endif
} else if (op <= MP_BINARY_OP_INPLACE_POWER) {
mp_obj_int_t *res = mp_obj_int_new_mpz();
switch (op) {
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD:
mpz_add_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT:
mpz_sub_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_INPLACE_MULTIPLY:
mpz_mul_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_FLOOR_DIVIDE:
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: {
mpz_t rem; mpz_init_zero(&rem);
mpz_divmod_inpl(&res->mpz, &rem, zlhs, zrhs);
if (zlhs->neg != zrhs->neg) {
if (!mpz_is_zero(&rem)) {
mpz_t mpzone; mpz_init_from_int(&mpzone, -1);
mpz_add_inpl(&res->mpz, &res->mpz, &mpzone);
}
}
mpz_deinit(&rem);
break;
}
case MP_BINARY_OP_MODULO:
case MP_BINARY_OP_INPLACE_MODULO: {
2014-03-20 12:28:41 -04:00
mpz_t quo; mpz_init_zero(&quo);
mpz_divmod_inpl(&quo, &res->mpz, zlhs, zrhs);
mpz_deinit(&quo);
// Check signs and do Python style modulo
if (zlhs->neg != zrhs->neg) {
mpz_add_inpl(&res->mpz, &res->mpz, zrhs);
}
2014-03-20 12:28:41 -04:00
break;
}
case MP_BINARY_OP_AND:
case MP_BINARY_OP_INPLACE_AND:
mpz_and_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_OR:
case MP_BINARY_OP_INPLACE_OR:
mpz_or_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_XOR:
case MP_BINARY_OP_INPLACE_XOR:
mpz_xor_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_LSHIFT:
case MP_BINARY_OP_INPLACE_LSHIFT:
case MP_BINARY_OP_RSHIFT:
case MP_BINARY_OP_INPLACE_RSHIFT: {
// TODO check conversion overflow
machine_int_t irhs = mpz_as_int(zrhs);
if (irhs < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
}
if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) {
mpz_shl_inpl(&res->mpz, zlhs, irhs);
} else {
mpz_shr_inpl(&res->mpz, zlhs, irhs);
}
break;
}
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER:
mpz_pow_inpl(&res->mpz, zlhs, zrhs);
break;
default:
return MP_OBJ_NOT_SUPPORTED;
}
return res;
} else {
int cmp = mpz_cmp(zlhs, zrhs);
switch (op) {
case MP_BINARY_OP_LESS:
return MP_BOOL(cmp < 0);
case MP_BINARY_OP_MORE:
return MP_BOOL(cmp > 0);
case MP_BINARY_OP_LESS_EQUAL:
return MP_BOOL(cmp <= 0);
case MP_BINARY_OP_MORE_EQUAL:
return MP_BOOL(cmp >= 0);
case MP_BINARY_OP_EQUAL:
return MP_BOOL(cmp == 0);
default:
return MP_OBJ_NOT_SUPPORTED;
}
}
}
mp_obj_t mp_obj_new_int(machine_int_t value) {
if (MP_OBJ_FITS_SMALL_INT(value)) {
return MP_OBJ_NEW_SMALL_INT(value);
}
return mp_obj_new_int_from_ll(value);
}
mp_obj_t mp_obj_new_int_from_ll(long long val) {
mp_obj_int_t *o = mp_obj_int_new_mpz();
mpz_set_from_ll(&o->mpz, val);
return o;
}
mp_obj_t mp_obj_new_int_from_uint(machine_uint_t value) {
// SMALL_INT accepts only signed numbers, of one bit less size
// than word size, which totals 2 bits less for unsigned numbers.
if ((value & (WORD_MSBIT_HIGH | (WORD_MSBIT_HIGH >> 1))) == 0) {
return MP_OBJ_NEW_SMALL_INT(value);
}
return mp_obj_new_int_from_ll(value);
}
mp_obj_t mp_obj_new_int_from_long_str(const char *str) {
mp_obj_int_t *o = mp_obj_int_new_mpz();
uint len = strlen(str);
int base = 0;
int skip = mp_parse_num_base(str, len, &base);
str += skip;
len -= skip;
uint n = mpz_set_from_str(&o->mpz, str, len, false, base);
if (n != len) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_SyntaxError, "invalid syntax for number"));
}
return o;
}
machine_int_t mp_obj_int_get(mp_obj_t self_in) {
if (MP_OBJ_IS_SMALL_INT(self_in)) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
} else {
mp_obj_int_t *self = self_in;
return mpz_as_int(&self->mpz);
}
}
machine_int_t mp_obj_int_get_checked(mp_obj_t self_in) {
if (MP_OBJ_IS_SMALL_INT(self_in)) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
} else {
mp_obj_int_t *self = self_in;
machine_int_t value;
if (mpz_as_int_checked(&self->mpz, &value)) {
return value;
} else {
// overflow
nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "overflow converting long int to machine word"));
}
}
}
#if MICROPY_ENABLE_FLOAT
mp_float_t mp_obj_int_as_float(mp_obj_t self_in) {
if (MP_OBJ_IS_SMALL_INT(self_in)) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
} else {
mp_obj_int_t *self = self_in;
return mpz_as_float(&self->mpz);
}
}
#endif
#endif