circuitpython/stmhal/storage.c

411 lines
15 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "lib/fatfs/ff.h"
#include "extmod/fsusermount.h"
#include "systick.h"
#include "led.h"
#include "flash.h"
#include "storage.h"
#include "irq.h"
#if defined(STM32F405xx) || defined(STM32F407xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
// enable this to get an extra 64k of storage (uses the last sector of the flash)
#if 0
#define FLASH_MEM_SEG2_START_ADDR (0x080e0000) // sector 11
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 11: 128k
#endif
2015-04-18 17:15:59 -04:00
#elif defined(STM32F401xE) || defined(STM32F411xE)
STATIC byte flash_cache_mem[0x4000] __attribute__((aligned(4))); // 16k
#define CACHE_MEM_START_ADDR (&flash_cache_mem[0])
#define FLASH_SECTOR_SIZE_MAX (0x4000) // 16k max due to size of cache buffer
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (128) // sectors 1,2,3,4: 16k+16k+16k+16k(of 64k)=64k
#elif defined(STM32F429xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
#elif defined(STM32F439xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08100000) // sector 12
#define FLASH_MEM_SEG1_NUM_BLOCKS (384) // sectors 12,13,14,15,16,17: 16k+16k+16k+16k+64k+64k(of 128k)=192k
#define FLASH_MEM_SEG2_START_ADDR (0x08140000) // sector 18
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 18: 64k(of 128k)
#elif defined(STM32F746xx)
// The STM32F746 doesn't really have CCRAM, so we use the 64K DTCM for this.
#define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x08000) // 32k max
#define FLASH_MEM_SEG1_START_ADDR (0x08008000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (192) // sectors 1,2,3: 32k+32k+32=96k
#else
#error "no storage support for this MCU"
#endif
#if !defined(FLASH_MEM_SEG2_START_ADDR)
#define FLASH_MEM_SEG2_START_ADDR (0) // no second segment
#define FLASH_MEM_SEG2_NUM_BLOCKS (0) // no second segment
#endif
#define FLASH_PART1_START_BLOCK (0x100)
#define FLASH_PART1_NUM_BLOCKS (FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS)
#define FLASH_FLAG_DIRTY (1)
#define FLASH_FLAG_FORCE_WRITE (2)
#define FLASH_FLAG_ERASED (4)
static bool flash_is_initialised = false;
static __IO uint8_t flash_flags = 0;
static uint32_t flash_cache_sector_id;
static uint32_t flash_cache_sector_start;
static uint32_t flash_cache_sector_size;
static uint32_t flash_tick_counter_last_write;
static void flash_cache_flush(void) {
if (flash_flags & FLASH_FLAG_DIRTY) {
flash_flags |= FLASH_FLAG_FORCE_WRITE;
while (flash_flags & FLASH_FLAG_DIRTY) {
NVIC->STIR = FLASH_IRQn;
}
}
}
static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) {
flash_sector_size = FLASH_SECTOR_SIZE_MAX;
}
if (flash_cache_sector_id != flash_sector_id) {
flash_cache_flush();
memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size);
flash_cache_sector_id = flash_sector_id;
flash_cache_sector_start = flash_sector_start;
flash_cache_sector_size = flash_sector_size;
}
flash_flags |= FLASH_FLAG_DIRTY;
led_state(PYB_LED_R1, 1); // indicate a dirty cache with LED on
flash_tick_counter_last_write = HAL_GetTick();
return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_cache_sector_id == flash_sector_id) {
// in cache, copy from there
return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
// not in cache, copy straight from flash
return (uint8_t*)flash_addr;
}
void storage_init(void) {
if (!flash_is_initialised) {
flash_flags = 0;
flash_cache_sector_id = 0;
flash_tick_counter_last_write = 0;
flash_is_initialised = true;
}
// Enable the flash IRQ, which is used to also call our storage IRQ handler
// It needs to go at a higher priority than all those components that rely on
// the flash storage (eg higher than USB MSC).
HAL_NVIC_SetPriority(FLASH_IRQn, IRQ_PRI_FLASH, IRQ_SUBPRI_FLASH);
HAL_NVIC_EnableIRQ(FLASH_IRQn);
}
uint32_t storage_get_block_size(void) {
return FLASH_BLOCK_SIZE;
}
uint32_t storage_get_block_count(void) {
return FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS;
}
void storage_irq_handler(void) {
if (!(flash_flags & FLASH_FLAG_DIRTY)) {
return;
}
// This code uses interrupts to erase the flash
/*
if (flash_erase_state == 0) {
flash_erase_it(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
flash_erase_state = 1;
return;
}
if (flash_erase_state == 1) {
// wait for erase
// TODO add timeout
#define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET)
if (!flash_erase_done()) {
return;
}
flash_erase_state = 2;
}
*/
// This code erases the flash directly, waiting for it to finish
if (!(flash_flags & FLASH_FLAG_ERASED)) {
flash_erase(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
flash_flags |= FLASH_FLAG_ERASED;
return;
}
// If not a forced write, wait at least 5 seconds after last write to flush
// On file close and flash unmount we get a forced write, so we can afford to wait a while
if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || sys_tick_has_passed(flash_tick_counter_last_write, 5000)) {
// sync the cache RAM buffer by writing it to the flash page
flash_write(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
// clear the flash flags now that we have a clean cache
flash_flags = 0;
// indicate a clean cache with LED off
led_state(PYB_LED_R1, 0);
}
}
void storage_flush(void) {
flash_cache_flush();
}
static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) {
buf[0] = boot;
if (num_blocks == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_blocks == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_block;
buf[9] = start_block >> 8;
buf[10] = start_block >> 16;
buf[11] = start_block >> 24;
buf[12] = num_blocks;
buf[13] = num_blocks >> 8;
buf[14] = num_blocks >> 16;
buf[15] = num_blocks >> 24;
}
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) {
// a block in partition 1
block -= FLASH_PART1_START_BLOCK;
if (block < FLASH_MEM_SEG1_NUM_BLOCKS) {
return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE;
} else if (block < FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) {
return FLASH_MEM_SEG2_START_ADDR + (block - FLASH_MEM_SEG1_NUM_BLOCKS) * FLASH_BLOCK_SIZE;
}
// can add more flash segments here if needed, following above pattern
}
// bad block
return -1;
}
bool storage_read_block(uint8_t *dest, uint32_t block) {
//printf("RD %u\n", block);
if (block == 0) {
// fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, FLASH_PART1_NUM_BLOCKS);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return true;
} else {
// non-MBR block, get data from flash memory, possibly via cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *src = flash_cache_get_addr_for_read(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
return true;
}
}
bool storage_write_block(const uint8_t *src, uint32_t block) {
//printf("WR %u\n", block);
if (block == 0) {
// can't write MBR, but pretend we did
return true;
} else {
// non-MBR block, copy to cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *dest = flash_cache_get_addr_for_write(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
return true;
}
}
mp_uint_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!storage_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
mp_uint_t storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!storage_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the flash as an object with the block protocol.
// there is a singleton Flash object
STATIC const mp_obj_base_t pyb_flash_obj = {&pyb_flash_type};
STATIC mp_obj_t pyb_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&pyb_flash_obj;
}
STATIC mp_obj_t pyb_flash_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = storage_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_readblocks_obj, pyb_flash_readblocks);
STATIC mp_obj_t pyb_flash_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = storage_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_writeblocks_obj, pyb_flash_writeblocks);
STATIC mp_obj_t pyb_flash_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT: storage_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(storage_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(storage_get_block_size());
default: return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_ioctl_obj, pyb_flash_ioctl);
STATIC const mp_map_elem_t pyb_flash_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&pyb_flash_readblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&pyb_flash_writeblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&pyb_flash_ioctl_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_flash_locals_dict, pyb_flash_locals_dict_table);
const mp_obj_type_t pyb_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_Flash,
.make_new = pyb_flash_make_new,
.locals_dict = (mp_obj_t)&pyb_flash_locals_dict,
};
void pyb_flash_init_vfs(fs_user_mount_t *vfs) {
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
vfs->readblocks[0] = (mp_obj_t)&pyb_flash_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&pyb_flash_obj;
vfs->readblocks[2] = (mp_obj_t)storage_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&pyb_flash_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&pyb_flash_obj;
vfs->writeblocks[2] = (mp_obj_t)storage_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&pyb_flash_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&pyb_flash_obj;
}