circuitpython/stmhal/modnwcc3k.c

614 lines
20 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// We can't include stdio.h because it defines _types_fd_set, but we
// need to use the CC3000 version of this type.
#include <std.h>
#include <string.h>
#include <stdarg.h>
#include <errno.h>
// CC3000 defines its own ENOBUFS (different to standard one!)
#undef ENOBUFS
#include "py/nlr.h"
#include "py/objtuple.h"
#include "py/objlist.h"
#include "py/stream.h"
#include "py/runtime.h"
#include "modnetwork.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "spi.h"
#include "pybioctl.h"
#include "hci.h"
#include "socket.h"
#include "inet_ntop.h"
#include "inet_pton.h"
#include "ccspi.h"
#include "wlan.h"
#include "nvmem.h"
#include "netapp.h"
#include "patch_prog.h"
#define MAX_ADDRSTRLEN (128)
#define MAX_RX_PACKET (CC3000_RX_BUFFER_SIZE-CC3000_MINIMAL_RX_SIZE-1)
#define MAX_TX_PACKET (CC3000_TX_BUFFER_SIZE-CC3000_MINIMAL_TX_SIZE-1)
#define MAKE_SOCKADDR(addr, ip, port) \
sockaddr addr; \
addr.sa_family = AF_INET; \
addr.sa_data[0] = port >> 8; \
addr.sa_data[1] = port; \
addr.sa_data[2] = ip[0]; \
addr.sa_data[3] = ip[1]; \
addr.sa_data[4] = ip[2]; \
addr.sa_data[5] = ip[3];
#define UNPACK_SOCKADDR(addr, ip, port) \
port = (addr.sa_data[0] << 8) | addr.sa_data[1]; \
ip[0] = addr.sa_data[2]; \
ip[1] = addr.sa_data[3]; \
ip[2] = addr.sa_data[4]; \
ip[3] = addr.sa_data[5];
STATIC int cc3k_socket_ioctl(mod_network_socket_obj_t *socket, mp_uint_t request, mp_uint_t arg, int *_errno);
int CC3000_EXPORT(errno); // for cc3000 driver
STATIC volatile uint32_t fd_closed_state = 0;
STATIC volatile bool wlan_connected = false;
STATIC volatile bool ip_obtained = false;
STATIC int cc3k_get_fd_closed_state(int fd) {
return fd_closed_state & (1 << fd);
}
STATIC void cc3k_set_fd_closed_state(int fd) {
fd_closed_state |= 1 << fd;
}
STATIC void cc3k_reset_fd_closed_state(int fd) {
fd_closed_state &= ~(1 << fd);
}
STATIC void cc3k_callback(long event_type, char *data, unsigned char length) {
switch (event_type) {
case HCI_EVNT_WLAN_UNSOL_CONNECT:
wlan_connected = true;
break;
case HCI_EVNT_WLAN_UNSOL_DISCONNECT:
// link down
wlan_connected = false;
ip_obtained = false;
break;
case HCI_EVNT_WLAN_UNSOL_DHCP:
ip_obtained = true;
break;
case HCI_EVNT_BSD_TCP_CLOSE_WAIT:
// mark socket for closure
cc3k_set_fd_closed_state(data[0]);
break;
}
}
STATIC int cc3k_gethostbyname(mp_obj_t nic, const char *name, mp_uint_t len, uint8_t *out_ip) {
uint32_t ip;
// CC3000 gethostbyname is unreliable and usually returns -95 on first call
for (int retry = 5; CC3000_EXPORT(gethostbyname)((char*)name, len, &ip) < 0; retry--) {
if (retry == 0 || CC3000_EXPORT(errno) != -95) {
return CC3000_EXPORT(errno);
}
HAL_Delay(50);
}
if (ip == 0) {
// unknown host
return ENOENT;
}
out_ip[0] = ip >> 24;
out_ip[1] = ip >> 16;
out_ip[2] = ip >> 8;
out_ip[3] = ip;
return 0;
}
STATIC int cc3k_socket_socket(mod_network_socket_obj_t *socket, int *_errno) {
if (socket->u_param.domain != MOD_NETWORK_AF_INET) {
*_errno = EAFNOSUPPORT;
return -1;
}
mp_uint_t type;
switch (socket->u_param.type) {
case MOD_NETWORK_SOCK_STREAM: type = SOCK_STREAM; break;
case MOD_NETWORK_SOCK_DGRAM: type = SOCK_DGRAM; break;
case MOD_NETWORK_SOCK_RAW: type = SOCK_RAW; break;
default: *_errno = EINVAL; return -1;
}
// open socket
int fd = CC3000_EXPORT(socket)(AF_INET, type, 0);
if (fd < 0) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
// clear socket state
cc3k_reset_fd_closed_state(fd);
// store state of this socket
socket->u_state = fd;
// make accept blocking by default
int optval = SOCK_OFF;
socklen_t optlen = sizeof(optval);
CC3000_EXPORT(setsockopt)(socket->u_state, SOL_SOCKET, SOCKOPT_ACCEPT_NONBLOCK, &optval, optlen);
return 0;
}
STATIC void cc3k_socket_close(mod_network_socket_obj_t *socket) {
CC3000_EXPORT(closesocket)(socket->u_state);
}
STATIC int cc3k_socket_bind(mod_network_socket_obj_t *socket, byte *ip, mp_uint_t port, int *_errno) {
MAKE_SOCKADDR(addr, ip, port)
int ret = CC3000_EXPORT(bind)(socket->u_state, &addr, sizeof(addr));
if (ret != 0) {
*_errno = ret;
return -1;
}
return 0;
}
STATIC int cc3k_socket_listen(mod_network_socket_obj_t *socket, mp_int_t backlog, int *_errno) {
int ret = CC3000_EXPORT(listen)(socket->u_state, backlog);
if (ret != 0) {
*_errno = ret;
return -1;
}
return 0;
}
STATIC int cc3k_socket_accept(mod_network_socket_obj_t *socket, mod_network_socket_obj_t *socket2, byte *ip, mp_uint_t *port, int *_errno) {
// accept incoming connection
int fd;
sockaddr addr;
socklen_t addr_len = sizeof(addr);
if ((fd = CC3000_EXPORT(accept)(socket->u_state, &addr, &addr_len)) < 0) {
if (fd == SOC_IN_PROGRESS) {
*_errno = EAGAIN;
} else {
*_errno = -fd;
}
return -1;
}
// clear socket state
cc3k_reset_fd_closed_state(fd);
// store state in new socket object
socket2->u_state = fd;
// return ip and port
// it seems CC3000 returns little endian for accept??
//UNPACK_SOCKADDR(addr, ip, *port);
*port = (addr.sa_data[1] << 8) | addr.sa_data[0];
ip[3] = addr.sa_data[2];
ip[2] = addr.sa_data[3];
ip[1] = addr.sa_data[4];
ip[0] = addr.sa_data[5];
return 0;
}
STATIC int cc3k_socket_connect(mod_network_socket_obj_t *socket, byte *ip, mp_uint_t port, int *_errno) {
MAKE_SOCKADDR(addr, ip, port)
int ret = CC3000_EXPORT(connect)(socket->u_state, &addr, sizeof(addr));
if (ret != 0) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
return 0;
}
STATIC mp_uint_t cc3k_socket_send(mod_network_socket_obj_t *socket, const byte *buf, mp_uint_t len, int *_errno) {
if (cc3k_get_fd_closed_state(socket->u_state)) {
CC3000_EXPORT(closesocket)(socket->u_state);
*_errno = EPIPE;
return -1;
}
// CC3K does not handle fragmentation, and will overflow,
// split the packet into smaller ones and send them out.
mp_int_t bytes = 0;
while (bytes < len) {
int n = MIN((len - bytes), MAX_TX_PACKET);
n = CC3000_EXPORT(send)(socket->u_state, (uint8_t*)buf + bytes, n, 0);
if (n <= 0) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
bytes += n;
}
return bytes;
}
STATIC mp_uint_t cc3k_socket_recv(mod_network_socket_obj_t *socket, byte *buf, mp_uint_t len, int *_errno) {
// check the socket is open
if (cc3k_get_fd_closed_state(socket->u_state)) {
// socket is closed, but CC3000 may have some data remaining in buffer, so check
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(socket->u_state, &rfds);
timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 1;
int nfds = CC3000_EXPORT(select)(socket->u_state + 1, &rfds, NULL, NULL, &tv);
if (nfds == -1 || !FD_ISSET(socket->u_state, &rfds)) {
// no data waiting, so close socket and return 0 data
CC3000_EXPORT(closesocket)(socket->u_state);
return 0;
}
}
// cap length at MAX_RX_PACKET
len = MIN(len, MAX_RX_PACKET);
// do the recv
int ret = CC3000_EXPORT(recv)(socket->u_state, buf, len, 0);
if (ret < 0) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
return ret;
}
STATIC mp_uint_t cc3k_socket_sendto(mod_network_socket_obj_t *socket, const byte *buf, mp_uint_t len, byte *ip, mp_uint_t port, int *_errno) {
MAKE_SOCKADDR(addr, ip, port)
int ret = CC3000_EXPORT(sendto)(socket->u_state, (byte*)buf, len, 0, (sockaddr*)&addr, sizeof(addr));
if (ret < 0) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
return ret;
}
STATIC mp_uint_t cc3k_socket_recvfrom(mod_network_socket_obj_t *socket, byte *buf, mp_uint_t len, byte *ip, mp_uint_t *port, int *_errno) {
sockaddr addr;
socklen_t addr_len = sizeof(addr);
mp_int_t ret = CC3000_EXPORT(recvfrom)(socket->u_state, buf, len, 0, &addr, &addr_len);
if (ret < 0) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
UNPACK_SOCKADDR(addr, ip, *port);
return ret;
}
STATIC int cc3k_socket_setsockopt(mod_network_socket_obj_t *socket, mp_uint_t level, mp_uint_t opt, const void *optval, mp_uint_t optlen, int *_errno) {
int ret = CC3000_EXPORT(setsockopt)(socket->u_state, level, opt, optval, optlen);
if (ret < 0) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
return 0;
}
STATIC int cc3k_socket_settimeout(mod_network_socket_obj_t *socket, mp_uint_t timeout_ms, int *_errno) {
int ret;
if (timeout_ms == 0 || timeout_ms == -1) {
int optval;
socklen_t optlen = sizeof(optval);
if (timeout_ms == 0) {
// set non-blocking mode
optval = SOCK_ON;
} else {
// set blocking mode
optval = SOCK_OFF;
}
ret = CC3000_EXPORT(setsockopt)(socket->u_state, SOL_SOCKET, SOCKOPT_RECV_NONBLOCK, &optval, optlen);
if (ret == 0) {
ret = CC3000_EXPORT(setsockopt)(socket->u_state, SOL_SOCKET, SOCKOPT_ACCEPT_NONBLOCK, &optval, optlen);
}
} else {
// set timeout
socklen_t optlen = sizeof(timeout_ms);
ret = CC3000_EXPORT(setsockopt)(socket->u_state, SOL_SOCKET, SOCKOPT_RECV_TIMEOUT, &timeout_ms, optlen);
}
if (ret != 0) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
return 0;
}
STATIC int cc3k_socket_ioctl(mod_network_socket_obj_t *socket, mp_uint_t request, mp_uint_t arg, int *_errno) {
mp_uint_t ret;
if (request == MP_IOCTL_POLL) {
mp_uint_t flags = arg;
ret = 0;
int fd = socket->u_state;
// init fds
fd_set rfds, wfds, xfds;
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
// set fds if needed
if (flags & MP_IOCTL_POLL_RD) {
FD_SET(fd, &rfds);
// A socked that just closed is available for reading. A call to
// recv() returns 0 which is consistent with BSD.
if (cc3k_get_fd_closed_state(fd)) {
ret |= MP_IOCTL_POLL_RD;
}
}
if (flags & MP_IOCTL_POLL_WR) {
FD_SET(fd, &wfds);
}
if (flags & MP_IOCTL_POLL_HUP) {
FD_SET(fd, &xfds);
}
// call cc3000 select with minimum timeout
timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 1;
int nfds = CC3000_EXPORT(select)(fd + 1, &rfds, &wfds, &xfds, &tv);
// check for error
if (nfds == -1) {
*_errno = CC3000_EXPORT(errno);
return -1;
}
// check return of select
if (FD_ISSET(fd, &rfds)) {
ret |= MP_IOCTL_POLL_RD;
}
if (FD_ISSET(fd, &wfds)) {
ret |= MP_IOCTL_POLL_WR;
}
if (FD_ISSET(fd, &xfds)) {
ret |= MP_IOCTL_POLL_HUP;
}
} else {
*_errno = EINVAL;
ret = -1;
}
return ret;
}
/******************************************************************************/
// Micro Python bindings; CC3K class
typedef struct _cc3k_obj_t {
mp_obj_base_t base;
} cc3k_obj_t;
// \classmethod \constructor(spi, pin_cs, pin_en, pin_irq)
// Initialise the CC3000 using the given SPI bus and pins and return a CC3K object.
//
// Note: pins were originally hard-coded to:
// PYBv1.0: init(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3)
// [SPI on Y position; Y6=B13=SCK, Y7=B14=MISO, Y8=B15=MOSI]
//
// STM32F4DISC: init(pyb.SPI(2), pyb.Pin.cpu.A15, pyb.Pin.cpu.B10, pyb.Pin.cpu.B11)
STATIC mp_obj_t cc3k_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 4, 4, false);
// set the pins to use
SpiInit(
spi_get_handle(args[0]),
pin_find(args[1]),
pin_find(args[2]),
pin_find(args[3])
);
// initialize and start the module
wlan_init(cc3k_callback, NULL, NULL, NULL,
ReadWlanInterruptPin, SpiResumeSpi, SpiPauseSpi, WriteWlanPin);
if (wlan_start(0) != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "failed to init CC3000 module"));
}
// set connection policy. this should be called explicitly by the user
// wlan_ioctl_set_connection_policy(0, 0, 0);
// Mask out all non-required events from the CC3000
wlan_set_event_mask(HCI_EVNT_WLAN_KEEPALIVE|
HCI_EVNT_WLAN_UNSOL_INIT|
HCI_EVNT_WLAN_ASYNC_PING_REPORT|
HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE);
cc3k_obj_t *cc3k = m_new_obj(cc3k_obj_t);
cc3k->base.type = (mp_obj_type_t*)&mod_network_nic_type_cc3k;
// register with network module
mod_network_register_nic(cc3k);
return cc3k;
}
// method connect(ssid, key=None, *, security=WPA2, bssid=None)
STATIC mp_obj_t cc3k_connect(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_ssid, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_key, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = WLAN_SEC_WPA2} },
{ MP_QSTR_bssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get ssid
mp_uint_t ssid_len;
const char *ssid = mp_obj_str_get_data(args[0].u_obj, &ssid_len);
// get key and sec
mp_uint_t key_len = 0;
const char *key = NULL;
mp_uint_t sec = WLAN_SEC_UNSEC;
if (args[1].u_obj != mp_const_none) {
key = mp_obj_str_get_data(args[1].u_obj, &key_len);
sec = args[2].u_int;
}
// get bssid
const char *bssid = NULL;
if (args[3].u_obj != mp_const_none) {
bssid = mp_obj_str_get_str(args[3].u_obj);
}
// connect to AP
if (wlan_connect(sec, (char*)ssid, ssid_len, (uint8_t*)bssid, (uint8_t*)key, key_len) != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "could not connect to ssid=%s, sec=%d, key=%s\n", ssid, sec, key));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(cc3k_connect_obj, 1, cc3k_connect);
STATIC mp_obj_t cc3k_disconnect(mp_obj_t self_in) {
// should we check return value?
wlan_disconnect();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_disconnect_obj, cc3k_disconnect);
STATIC mp_obj_t cc3k_isconnected(mp_obj_t self_in) {
return MP_BOOL(wlan_connected && ip_obtained);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_isconnected_obj, cc3k_isconnected);
STATIC mp_obj_t cc3k_ifconfig(mp_obj_t self_in) {
tNetappIpconfigRetArgs ipconfig;
netapp_ipconfig(&ipconfig);
// CC3000 returns little endian, but we want big endian
mod_network_convert_ipv4_endianness(ipconfig.aucIP);
mod_network_convert_ipv4_endianness(ipconfig.aucSubnetMask);
mod_network_convert_ipv4_endianness(ipconfig.aucDefaultGateway);
mod_network_convert_ipv4_endianness(ipconfig.aucDNSServer);
mod_network_convert_ipv4_endianness(ipconfig.aucDHCPServer);
// render MAC address
char mac_str[18];
const uint8_t *mac = ipconfig.uaMacAddr;
mp_uint_t mac_len = snprintf(mac_str, 18, "%02X:%02x:%02x:%02x:%02x:%02x", mac[5], mac[4], mac[3], mac[2], mac[1], mac[0]);
// create and return tuple with ifconfig info
mp_obj_t tuple[7] = {
mod_network_format_ipv4_addr(ipconfig.aucIP),
mod_network_format_ipv4_addr(ipconfig.aucSubnetMask),
mod_network_format_ipv4_addr(ipconfig.aucDefaultGateway),
mod_network_format_ipv4_addr(ipconfig.aucDNSServer),
mod_network_format_ipv4_addr(ipconfig.aucDHCPServer),
mp_obj_new_str(mac_str, mac_len, false),
mp_obj_new_str((const char*)ipconfig.uaSSID, strlen((const char*)ipconfig.uaSSID), false),
};
return mp_obj_new_tuple(MP_ARRAY_SIZE(tuple), tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_ifconfig_obj, cc3k_ifconfig);
STATIC mp_obj_t cc3k_patch_version(mp_obj_t self_in) {
uint8_t pver[2];
mp_obj_tuple_t *t_pver;
nvmem_read_sp_version(pver);
t_pver = mp_obj_new_tuple(2, NULL);
t_pver->items[0] = mp_obj_new_int(pver[0]);
t_pver->items[1] = mp_obj_new_int(pver[1]);
return t_pver;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_patch_version_obj, cc3k_patch_version);
STATIC mp_obj_t cc3k_patch_program(mp_obj_t self_in, mp_obj_t key_in) {
const char *key = mp_obj_str_get_str(key_in);
if (key[0] == 'p' && key[1] == 'g' && key[2] == 'm' && key[3] == '\0') {
patch_prog_start();
} else {
printf("pass 'pgm' as argument in order to program\n");
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_patch_program_obj, cc3k_patch_program);
STATIC const mp_map_elem_t cc3k_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&cc3k_connect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_disconnect), (mp_obj_t)&cc3k_disconnect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isconnected), (mp_obj_t)&cc3k_isconnected_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifconfig), (mp_obj_t)&cc3k_ifconfig_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_patch_version), (mp_obj_t)&cc3k_patch_version_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_patch_program), (mp_obj_t)&cc3k_patch_program_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_WEP), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WEP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPA), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPA2), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA2) },
};
STATIC MP_DEFINE_CONST_DICT(cc3k_locals_dict, cc3k_locals_dict_table);
const mod_network_nic_type_t mod_network_nic_type_cc3k = {
.base = {
{ &mp_type_type },
.name = MP_QSTR_CC3K,
.make_new = cc3k_make_new,
.locals_dict = (mp_obj_t)&cc3k_locals_dict,
},
.gethostbyname = cc3k_gethostbyname,
.socket = cc3k_socket_socket,
.close = cc3k_socket_close,
.bind = cc3k_socket_bind,
.listen = cc3k_socket_listen,
.accept = cc3k_socket_accept,
.connect = cc3k_socket_connect,
.send = cc3k_socket_send,
.recv = cc3k_socket_recv,
.sendto = cc3k_socket_sendto,
.recvfrom = cc3k_socket_recvfrom,
.setsockopt = cc3k_socket_setsockopt,
.settimeout = cc3k_socket_settimeout,
.ioctl = cc3k_socket_ioctl,
};