circuitpython/ports/unix/coverage.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

745 lines
27 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
2017-01-15 23:04:53 -05:00
#include <string.h>
#include "py/obj.h"
py: Rework bytecode and .mpy file format to be mostly static data. Background: .mpy files are precompiled .py files, built using mpy-cross, that contain compiled bytecode functions (and can also contain machine code). The benefit of using an .mpy file over a .py file is that they are faster to import and take less memory when importing. They are also smaller on disk. But the real benefit of .mpy files comes when they are frozen into the firmware. This is done by loading the .mpy file during compilation of the firmware and turning it into a set of big C data structures (the job of mpy-tool.py), which are then compiled and downloaded into the ROM of a device. These C data structures can be executed in-place, ie directly from ROM. This makes importing even faster because there is very little to do, and also means such frozen modules take up much less RAM (because their bytecode stays in ROM). The downside of frozen code is that it requires recompiling and reflashing the entire firmware. This can be a big barrier to entry, slows down development time, and makes it harder to do OTA updates of frozen code (because the whole firmware must be updated). This commit attempts to solve this problem by providing a solution that sits between loading .mpy files into RAM and freezing them into the firmware. The .mpy file format has been reworked so that it consists of data and bytecode which is mostly static and ready to run in-place. If these new .mpy files are located in flash/ROM which is memory addressable, the .mpy file can be executed (mostly) in-place. With this approach there is still a small amount of unpacking and linking of the .mpy file that needs to be done when it's imported, but it's still much better than loading an .mpy from disk into RAM (although not as good as freezing .mpy files into the firmware). The main trick to make static .mpy files is to adjust the bytecode so any qstrs that it references now go through a lookup table to convert from local qstr number in the module to global qstr number in the firmware. That means the bytecode does not need linking/rewriting of qstrs when it's loaded. Instead only a small qstr table needs to be built (and put in RAM) at import time. This means the bytecode itself is static/constant and can be used directly if it's in addressable memory. Also the qstr string data in the .mpy file, and some constant object data, can be used directly. Note that the qstr table is global to the module (ie not per function). In more detail, in the VM what used to be (schematically): qst = DECODE_QSTR_VALUE; is now (schematically): idx = DECODE_QSTR_INDEX; qst = qstr_table[idx]; That allows the bytecode to be fixed at compile time and not need relinking/rewriting of the qstr values. Only qstr_table needs to be linked when the .mpy is loaded. Incidentally, this helps to reduce the size of bytecode because what used to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices. If the module uses the same qstr more than two times then the bytecode is smaller than before. The following changes are measured for this commit compared to the previous (the baseline): - average 7%-9% reduction in size of .mpy files - frozen code size is reduced by about 5%-7% - importing .py files uses about 5% less RAM in total - importing .mpy files uses about 4% less RAM in total - importing .py and .mpy files takes about the same time as before The qstr indirection in the bytecode has only a small impact on VM performance. For stm32 on PYBv1.0 the performance change of this commit is: diff of scores (higher is better) N=100 M=100 baseline -> this-commit diff diff% (error%) bm_chaos.py 371.07 -> 357.39 : -13.68 = -3.687% (+/-0.02%) bm_fannkuch.py 78.72 -> 77.49 : -1.23 = -1.563% (+/-0.01%) bm_fft.py 2591.73 -> 2539.28 : -52.45 = -2.024% (+/-0.00%) bm_float.py 6034.93 -> 5908.30 : -126.63 = -2.098% (+/-0.01%) bm_hexiom.py 48.96 -> 47.93 : -1.03 = -2.104% (+/-0.00%) bm_nqueens.py 4510.63 -> 4459.94 : -50.69 = -1.124% (+/-0.00%) bm_pidigits.py 650.28 -> 644.96 : -5.32 = -0.818% (+/-0.23%) core_import_mpy_multi.py 564.77 -> 581.49 : +16.72 = +2.960% (+/-0.01%) core_import_mpy_single.py 68.67 -> 67.16 : -1.51 = -2.199% (+/-0.01%) core_qstr.py 64.16 -> 64.12 : -0.04 = -0.062% (+/-0.00%) core_yield_from.py 362.58 -> 354.50 : -8.08 = -2.228% (+/-0.00%) misc_aes.py 429.69 -> 405.59 : -24.10 = -5.609% (+/-0.01%) misc_mandel.py 3485.13 -> 3416.51 : -68.62 = -1.969% (+/-0.00%) misc_pystone.py 2496.53 -> 2405.56 : -90.97 = -3.644% (+/-0.01%) misc_raytrace.py 381.47 -> 374.01 : -7.46 = -1.956% (+/-0.01%) viper_call0.py 576.73 -> 572.49 : -4.24 = -0.735% (+/-0.04%) viper_call1a.py 550.37 -> 546.21 : -4.16 = -0.756% (+/-0.09%) viper_call1b.py 438.23 -> 435.68 : -2.55 = -0.582% (+/-0.06%) viper_call1c.py 442.84 -> 440.04 : -2.80 = -0.632% (+/-0.08%) viper_call2a.py 536.31 -> 532.35 : -3.96 = -0.738% (+/-0.06%) viper_call2b.py 382.34 -> 377.07 : -5.27 = -1.378% (+/-0.03%) And for unix on x64: diff of scores (higher is better) N=2000 M=2000 baseline -> this-commit diff diff% (error%) bm_chaos.py 13594.20 -> 13073.84 : -520.36 = -3.828% (+/-5.44%) bm_fannkuch.py 60.63 -> 59.58 : -1.05 = -1.732% (+/-3.01%) bm_fft.py 112009.15 -> 111603.32 : -405.83 = -0.362% (+/-4.03%) bm_float.py 246202.55 -> 247923.81 : +1721.26 = +0.699% (+/-2.79%) bm_hexiom.py 615.65 -> 617.21 : +1.56 = +0.253% (+/-1.64%) bm_nqueens.py 215807.95 -> 215600.96 : -206.99 = -0.096% (+/-3.52%) bm_pidigits.py 8246.74 -> 8422.82 : +176.08 = +2.135% (+/-3.64%) misc_aes.py 16133.00 -> 16452.74 : +319.74 = +1.982% (+/-1.50%) misc_mandel.py 128146.69 -> 130796.43 : +2649.74 = +2.068% (+/-3.18%) misc_pystone.py 83811.49 -> 83124.85 : -686.64 = -0.819% (+/-1.03%) misc_raytrace.py 21688.02 -> 21385.10 : -302.92 = -1.397% (+/-3.20%) The code size change is (firmware with a lot of frozen code benefits the most): bare-arm: +396 +0.697% minimal x86: +1595 +0.979% [incl +32(data)] unix x64: +2408 +0.470% [incl +800(data)] unix nanbox: +1396 +0.309% [incl -96(data)] stm32: -1256 -0.318% PYBV10 cc3200: +288 +0.157% esp8266: -260 -0.037% GENERIC esp32: -216 -0.014% GENERIC[incl -1072(data)] nrf: +116 +0.067% pca10040 rp2: -664 -0.135% PICO samd: +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS As part of this change the .mpy file format version is bumped to version 6. And mpy-tool.py has been improved to provide a good visualisation of the contents of .mpy files. In summary: this commit changes the bytecode to use qstr indirection, and reworks the .mpy file format to be simpler and allow .mpy files to be executed in-place. Performance is not impacted too much. Eventually it will be possible to store such .mpy files in a linear, read-only, memory- mappable filesystem so they can be executed from flash/ROM. This will essentially be able to replace frozen code for most applications. Signed-off-by: Damien George <damien@micropython.org>
2021-10-22 07:22:47 -04:00
#include "py/objfun.h"
#include "py/objstr.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/repl.h"
2015-10-01 13:49:37 -04:00
#include "py/mpz.h"
#include "py/builtin.h"
#include "py/emit.h"
#include "py/formatfloat.h"
#include "py/ringbuf.h"
#include "py/pairheap.h"
2017-01-15 23:04:53 -05:00
#include "py/stream.h"
2017-03-14 02:58:43 -04:00
#include "py/binary.h"
#include "py/bc.h"
2017-01-15 23:04:53 -05:00
// expected output of this file is found in extra_coverage.py.exp
#if defined(MICROPY_UNIX_COVERAGE)
2017-01-15 23:04:53 -05:00
// stream testing object
typedef struct _mp_obj_streamtest_t {
mp_obj_base_t base;
uint8_t *buf;
size_t len;
size_t pos;
int error_code;
} mp_obj_streamtest_t;
STATIC mp_obj_t stest_set_buf(mp_obj_t o_in, mp_obj_t buf_in) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
o->buf = m_new(uint8_t, bufinfo.len);
memcpy(o->buf, bufinfo.buf, bufinfo.len);
o->len = bufinfo.len;
o->pos = 0;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(stest_set_buf_obj, stest_set_buf);
STATIC mp_obj_t stest_set_error(mp_obj_t o_in, mp_obj_t err_in) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
o->error_code = mp_obj_get_int(err_in);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(stest_set_error_obj, stest_set_error);
STATIC mp_uint_t stest_read(mp_obj_t o_in, void *buf, mp_uint_t size, int *errcode) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
if (o->pos < o->len) {
if (size > o->len - o->pos) {
size = o->len - o->pos;
}
memcpy(buf, o->buf + o->pos, size);
o->pos += size;
return size;
} else if (o->error_code == 0) {
return 0;
} else {
*errcode = o->error_code;
return MP_STREAM_ERROR;
}
}
STATIC mp_uint_t stest_write(mp_obj_t o_in, const void *buf, mp_uint_t size, int *errcode) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
(void)buf;
(void)size;
*errcode = o->error_code;
return MP_STREAM_ERROR;
}
STATIC mp_uint_t stest_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
(void)arg;
(void)request;
(void)errcode;
if (o->error_code != 0) {
*errcode = o->error_code;
return MP_STREAM_ERROR;
}
return 0;
}
STATIC const mp_rom_map_elem_t rawfile_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_set_buf), MP_ROM_PTR(&stest_set_buf_obj) },
{ MP_ROM_QSTR(MP_QSTR_set_error), MP_ROM_PTR(&stest_set_error_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_read1), MP_ROM_PTR(&mp_stream_read1_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write1), MP_ROM_PTR(&mp_stream_write1_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&mp_stream_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(rawfile_locals_dict, rawfile_locals_dict_table);
STATIC const mp_stream_p_t fileio_stream_p = {
.read = stest_read,
.write = stest_write,
.ioctl = stest_ioctl,
};
STATIC MP_DEFINE_CONST_OBJ_TYPE(
mp_type_stest_fileio,
MP_QSTR_stest_fileio,
MP_TYPE_FLAG_NONE,
protocol, &fileio_stream_p,
locals_dict, &rawfile_locals_dict
);
2017-01-15 23:04:53 -05:00
// stream read returns non-blocking error
STATIC mp_uint_t stest_read2(mp_obj_t o_in, void *buf, mp_uint_t size, int *errcode) {
(void)o_in;
(void)buf;
(void)size;
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
STATIC const mp_rom_map_elem_t rawfile_locals_dict_table2[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
};
STATIC MP_DEFINE_CONST_DICT(rawfile_locals_dict2, rawfile_locals_dict_table2);
STATIC const mp_stream_p_t textio_stream_p2 = {
.read = stest_read2,
.write = NULL,
.is_text = true,
};
STATIC MP_DEFINE_CONST_OBJ_TYPE(
mp_type_stest_textio2,
MP_QSTR_stest_textio2,
MP_TYPE_FLAG_NONE,
protocol, &textio_stream_p2,
locals_dict, &rawfile_locals_dict2
);
2017-01-15 23:04:53 -05:00
// str/bytes objects without a valid hash
STATIC const mp_obj_str_t str_no_hash_obj = {{&mp_type_str}, 0, 10, (const byte *)"0123456789"};
STATIC const mp_obj_str_t bytes_no_hash_obj = {{&mp_type_bytes}, 0, 10, (const byte *)"0123456789"};
STATIC int pairheap_lt(mp_pairheap_t *a, mp_pairheap_t *b) {
return (uintptr_t)a < (uintptr_t)b;
}
// ops array contain operations: x>=0 means push(x), x<0 means delete(-x)
STATIC void pairheap_test(size_t nops, int *ops) {
mp_pairheap_t node[8];
for (size_t i = 0; i < MP_ARRAY_SIZE(node); ++i) {
mp_pairheap_init_node(pairheap_lt, &node[i]);
}
mp_pairheap_t *heap = mp_pairheap_new(pairheap_lt);
mp_printf(&mp_plat_print, "create:");
for (size_t i = 0; i < nops; ++i) {
if (ops[i] >= 0) {
heap = mp_pairheap_push(pairheap_lt, heap, &node[ops[i]]);
} else {
heap = mp_pairheap_delete(pairheap_lt, heap, &node[-ops[i]]);
}
if (mp_pairheap_is_empty(pairheap_lt, heap)) {
mp_printf(&mp_plat_print, " -");
} else {
mp_printf(&mp_plat_print, " %d", mp_pairheap_peek(pairheap_lt, heap) - &node[0]);
;
}
}
mp_printf(&mp_plat_print, "\npop all:");
while (!mp_pairheap_is_empty(pairheap_lt, heap)) {
mp_printf(&mp_plat_print, " %d", mp_pairheap_peek(pairheap_lt, heap) - &node[0]);
;
heap = mp_pairheap_pop(pairheap_lt, heap);
}
mp_printf(&mp_plat_print, "\n");
}
// function to run extra tests for things that can't be checked by scripts
STATIC mp_obj_t extra_coverage(void) {
// mp_printf (used by ports that don't have a native printf)
{
mp_printf(&mp_plat_print, "# mp_printf\n");
mp_printf(&mp_plat_print, "%d %+d % d\n", -123, 123, 123); // sign
mp_printf(&mp_plat_print, "%05d\n", -123); // negative number with zero padding
mp_printf(&mp_plat_print, "%ld\n", 123); // long
mp_printf(&mp_plat_print, "%lx\n", 0x123); // long hex
mp_printf(&mp_plat_print, "%X\n", 0x1abcdef); // capital hex
mp_printf(&mp_plat_print, "%.2s %.3s '%4.4s' '%5.5q' '%.3q'\n", "abc", "abc", "abc", MP_QSTR_True, MP_QSTR_True); // fixed string precision
mp_printf(&mp_plat_print, "%.*s\n", -1, "abc"); // negative string precision
mp_printf(&mp_plat_print, "%b %b\n", 0, 1); // bools
#ifndef NDEBUG
mp_printf(&mp_plat_print, "%s\n", NULL); // null string
#else
mp_printf(&mp_plat_print, "(null)\n"); // without debugging mp_printf won't check for null
#endif
mp_printf(&mp_plat_print, "%d\n", 0x80000000); // should print signed
mp_printf(&mp_plat_print, "%u\n", 0x80000000); // should print unsigned
mp_printf(&mp_plat_print, "%x\n", 0x80000000); // should print unsigned
mp_printf(&mp_plat_print, "%X\n", 0x80000000); // should print unsigned
mp_printf(&mp_plat_print, "abc\n%"); // string ends in middle of format specifier
mp_printf(&mp_plat_print, "%%\n"); // literal % character
}
// GC
{
mp_printf(&mp_plat_print, "# GC\n");
// calling gc_free while GC is locked
gc_lock();
gc_free(NULL);
gc_unlock();
// using gc_realloc to resize to 0, which means free the memory
void *p = gc_alloc(4, false);
mp_printf(&mp_plat_print, "%p\n", gc_realloc(p, 0, false));
// calling gc_nbytes with a non-heap pointer
mp_printf(&mp_plat_print, "%p\n", gc_nbytes(NULL));
}
// GC initialisation and allocation stress test, to check the logic behind ALLOC_TABLE_GAP_BYTE
// (the following test should fail when ALLOC_TABLE_GAP_BYTE=0)
{
mp_printf(&mp_plat_print, "# GC part 2\n");
// check the GC is unlocked and save its state
assert(MP_STATE_THREAD(gc_lock_depth) == 0);
mp_state_mem_t mp_state_mem_orig = mp_state_ctx.mem;
// perform the test
unsigned heap_size = 64 * MICROPY_BYTES_PER_GC_BLOCK;
for (unsigned j = 0; j < 256 * MP_BYTES_PER_OBJ_WORD; ++j) {
char *heap = calloc(heap_size, 1);
gc_init(heap, heap + heap_size);
m_malloc(MICROPY_BYTES_PER_GC_BLOCK);
void *o = gc_alloc(MICROPY_BYTES_PER_GC_BLOCK, GC_ALLOC_FLAG_HAS_FINALISER);
((mp_obj_base_t *)o)->type = NULL; // ensure type is cleared so GC doesn't look for finaliser
for (unsigned i = 0; i < heap_size / MICROPY_BYTES_PER_GC_BLOCK; ++i) {
void *p = m_malloc_maybe(MICROPY_BYTES_PER_GC_BLOCK);
if (!p) {
break;
}
*(void **)p = o;
o = p;
}
gc_collect();
free(heap);
heap_size += MICROPY_BYTES_PER_GC_BLOCK / 16;
}
mp_printf(&mp_plat_print, "pass\n");
// restore the GC state (the original heap)
mp_state_ctx.mem = mp_state_mem_orig;
}
// tracked allocation
{
#define NUM_PTRS (8)
#define NUM_BYTES (128)
#define FLIP_POINTER(p) ((uint8_t *)((uintptr_t)(p) ^ 0x0f))
mp_printf(&mp_plat_print, "# tracked allocation\n");
mp_printf(&mp_plat_print, "m_tracked_head = %p\n", MP_STATE_VM(m_tracked_head));
uint8_t *ptrs[NUM_PTRS];
// allocate memory blocks
for (size_t i = 0; i < NUM_PTRS; ++i) {
ptrs[i] = m_tracked_calloc(1, NUM_BYTES);
bool all_zero = true;
for (size_t j = 0; j < NUM_BYTES; ++j) {
if (ptrs[i][j] != 0) {
all_zero = false;
break;
}
ptrs[i][j] = j;
}
mp_printf(&mp_plat_print, "%d %d\n", i, all_zero);
// hide the pointer from the GC and collect
ptrs[i] = FLIP_POINTER(ptrs[i]);
gc_collect();
}
// check the memory blocks have the correct content
for (size_t i = 0; i < NUM_PTRS; ++i) {
bool correct_contents = true;
for (size_t j = 0; j < NUM_BYTES; ++j) {
if (FLIP_POINTER(ptrs[i])[j] != j) {
correct_contents = false;
break;
}
}
mp_printf(&mp_plat_print, "%d %d\n", i, correct_contents);
}
// free the memory blocks
for (size_t i = 0; i < NUM_PTRS; ++i) {
m_tracked_free(FLIP_POINTER(ptrs[i]));
}
mp_printf(&mp_plat_print, "m_tracked_head = %p\n", MP_STATE_VM(m_tracked_head));
}
// vstr
{
mp_printf(&mp_plat_print, "# vstr\n");
vstr_t *vstr = vstr_new(16);
vstr_hint_size(vstr, 32);
vstr_add_str(vstr, "ts");
vstr_ins_byte(vstr, 1, 'e');
vstr_ins_char(vstr, 3, 't');
vstr_ins_char(vstr, 10, 's');
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
vstr_cut_head_bytes(vstr, 2);
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
vstr_cut_tail_bytes(vstr, 10);
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
vstr_printf(vstr, "t%cst", 'e');
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
vstr_cut_out_bytes(vstr, 3, 10);
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
VSTR_FIXED(fix, 4);
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
vstr_add_str(&fix, "large");
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
fix.len = fix.alloc;
if (nlr_push(&nlr) == 0) {
vstr_null_terminated_str(&fix);
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
}
// repl autocomplete
{
mp_printf(&mp_plat_print, "# repl\n");
const char *str;
size_t len = mp_repl_autocomplete("__n", 3, &mp_plat_print, &str);
mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
2023-08-22 11:15:46 -04:00
len = mp_repl_autocomplete("im", 2, &mp_plat_print, &str);
mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
mp_repl_autocomplete("import ", 7, &mp_plat_print, &str);
2023-08-22 11:15:46 -04:00
len = mp_repl_autocomplete("import ti", 9, &mp_plat_print, &str);
mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
2023-08-22 11:15:46 -04:00
mp_repl_autocomplete("import ra", 9, &mp_plat_print, &str);
mp_store_global(MP_QSTR_sys, mp_import_name(MP_QSTR_sys, mp_const_none, MP_OBJ_NEW_SMALL_INT(0)));
mp_repl_autocomplete("sys.", 4, &mp_plat_print, &str);
len = mp_repl_autocomplete("sys.impl", 8, &mp_plat_print, &str);
mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
}
// attrtuple
{
mp_printf(&mp_plat_print, "# attrtuple\n");
static const qstr fields[] = {MP_QSTR_start, MP_QSTR_stop, MP_QSTR_step};
static const mp_obj_t items[] = {MP_OBJ_NEW_SMALL_INT(1), MP_OBJ_NEW_SMALL_INT(2), MP_OBJ_NEW_SMALL_INT(3)};
mp_obj_print_helper(&mp_plat_print, mp_obj_new_attrtuple(fields, 3, items), PRINT_REPR);
mp_printf(&mp_plat_print, "\n");
}
// str
{
mp_printf(&mp_plat_print, "# str\n");
// intern string
mp_printf(&mp_plat_print, "%d\n", mp_obj_is_qstr(mp_obj_str_intern(mp_obj_new_str("intern me", 9))));
}
// bytearray
{
mp_printf(&mp_plat_print, "# bytearray\n");
// create a bytearray via mp_obj_new_bytearray
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(mp_obj_new_bytearray(4, "data"), &bufinfo, MP_BUFFER_RW);
mp_printf(&mp_plat_print, "%.*s\n", bufinfo.len, bufinfo.buf);
}
2015-10-01 13:49:37 -04:00
// mpz
{
mp_printf(&mp_plat_print, "# mpz\n");
2015-10-01 13:49:37 -04:00
mp_uint_t value;
mpz_t mpz;
mpz_init_zero(&mpz);
// mpz_as_uint_checked, with success
mpz_set_from_int(&mpz, 12345678);
mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));
mp_printf(&mp_plat_print, "%d\n", (int)value);
2015-10-01 13:49:37 -04:00
// mpz_as_uint_checked, with negative arg
mpz_set_from_int(&mpz, -1);
mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));
2015-10-01 13:49:37 -04:00
// mpz_as_uint_checked, with overflowing arg
mpz_set_from_int(&mpz, 1);
mpz_shl_inpl(&mpz, &mpz, 70);
mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));
// mpz_set_from_float with inf as argument
mpz_set_from_float(&mpz, 1.0 / 0.0);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_set_from_float with 0 as argument
mpz_set_from_float(&mpz, 0);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_set_from_float with 0<x<1 as argument
mpz_set_from_float(&mpz, 1e-10);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_set_from_float with 1<=x<2 as argument
mpz_set_from_float(&mpz, 1.5);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_set_from_float with 2<x as argument
mpz_set_from_float(&mpz, 12345);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_mul_inpl with dest==rhs, lhs!=rhs
mpz_t mpz2;
mpz_set_from_int(&mpz, 2);
mpz_init_from_int(&mpz2, 3);
mpz_mul_inpl(&mpz, &mpz2, &mpz);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
2015-10-01 13:49:37 -04:00
}
// runtime utils
{
mp_printf(&mp_plat_print, "# runtime utils\n");
// call mp_call_function_1_protected
mp_call_function_1_protected(MP_OBJ_FROM_PTR(&mp_builtin_abs_obj), MP_OBJ_NEW_SMALL_INT(1));
// call mp_call_function_1_protected with invalid args
mp_call_function_1_protected(MP_OBJ_FROM_PTR(&mp_builtin_abs_obj), mp_obj_new_str("abc", 3));
// call mp_call_function_2_protected
mp_call_function_2_protected(MP_OBJ_FROM_PTR(&mp_builtin_divmod_obj), MP_OBJ_NEW_SMALL_INT(1), MP_OBJ_NEW_SMALL_INT(1));
// call mp_call_function_2_protected with invalid args
mp_call_function_2_protected(MP_OBJ_FROM_PTR(&mp_builtin_divmod_obj), mp_obj_new_str("abc", 3), mp_obj_new_str("abc", 3));
// mp_obj_int_get_uint_checked with non-negative small-int
mp_printf(&mp_plat_print, "%d\n", (int)mp_obj_int_get_uint_checked(MP_OBJ_NEW_SMALL_INT(1)));
// mp_obj_int_get_uint_checked with non-negative big-int
mp_printf(&mp_plat_print, "%d\n", (int)mp_obj_int_get_uint_checked(mp_obj_new_int_from_ll(2)));
// mp_obj_int_get_uint_checked with negative small-int (should raise exception)
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_int_get_uint_checked(MP_OBJ_NEW_SMALL_INT(-1));
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
// mp_obj_int_get_uint_checked with negative big-int (should raise exception)
if (nlr_push(&nlr) == 0) {
mp_obj_int_get_uint_checked(mp_obj_new_int_from_ll(-2));
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
// call mp_obj_new_exception_args (it's a part of the public C API and not used in the core)
mp_obj_print_exception(&mp_plat_print, mp_obj_new_exception_args(&mp_type_ValueError, 0, NULL));
}
// warning
{
mp_emitter_warning(MP_PASS_CODE_SIZE, "test");
}
// format float
{
mp_printf(&mp_plat_print, "# format float\n");
// format with inadequate buffer size
char buf[5];
mp_format_float(1, buf, sizeof(buf), 'g', 0, '+');
mp_printf(&mp_plat_print, "%s\n", buf);
// format with just enough buffer so that precision must be
// set from 0 to 1 twice
char buf2[8];
mp_format_float(1, buf2, sizeof(buf2), 'g', 0, '+');
mp_printf(&mp_plat_print, "%s\n", buf2);
// format where precision is trimmed to avoid buffer overflow
mp_format_float(1, buf2, sizeof(buf2), 'e', 0, '+');
mp_printf(&mp_plat_print, "%s\n", buf2);
}
2017-03-14 02:58:43 -04:00
// binary
{
mp_printf(&mp_plat_print, "# binary\n");
// call function with float and double typecodes
float far[1];
double dar[1];
mp_binary_set_val_array_from_int('f', far, 0, 123);
mp_printf(&mp_plat_print, "%.0f\n", (double)far[0]);
mp_binary_set_val_array_from_int('d', dar, 0, 456);
mp_printf(&mp_plat_print, "%.0lf\n", dar[0]);
}
// VM
{
mp_printf(&mp_plat_print, "# VM\n");
2023-09-20 12:23:28 -04:00
// call mp_execute_bytecode with invalid bytecode (should raise NotImplementedError)
py: Rework bytecode and .mpy file format to be mostly static data. Background: .mpy files are precompiled .py files, built using mpy-cross, that contain compiled bytecode functions (and can also contain machine code). The benefit of using an .mpy file over a .py file is that they are faster to import and take less memory when importing. They are also smaller on disk. But the real benefit of .mpy files comes when they are frozen into the firmware. This is done by loading the .mpy file during compilation of the firmware and turning it into a set of big C data structures (the job of mpy-tool.py), which are then compiled and downloaded into the ROM of a device. These C data structures can be executed in-place, ie directly from ROM. This makes importing even faster because there is very little to do, and also means such frozen modules take up much less RAM (because their bytecode stays in ROM). The downside of frozen code is that it requires recompiling and reflashing the entire firmware. This can be a big barrier to entry, slows down development time, and makes it harder to do OTA updates of frozen code (because the whole firmware must be updated). This commit attempts to solve this problem by providing a solution that sits between loading .mpy files into RAM and freezing them into the firmware. The .mpy file format has been reworked so that it consists of data and bytecode which is mostly static and ready to run in-place. If these new .mpy files are located in flash/ROM which is memory addressable, the .mpy file can be executed (mostly) in-place. With this approach there is still a small amount of unpacking and linking of the .mpy file that needs to be done when it's imported, but it's still much better than loading an .mpy from disk into RAM (although not as good as freezing .mpy files into the firmware). The main trick to make static .mpy files is to adjust the bytecode so any qstrs that it references now go through a lookup table to convert from local qstr number in the module to global qstr number in the firmware. That means the bytecode does not need linking/rewriting of qstrs when it's loaded. Instead only a small qstr table needs to be built (and put in RAM) at import time. This means the bytecode itself is static/constant and can be used directly if it's in addressable memory. Also the qstr string data in the .mpy file, and some constant object data, can be used directly. Note that the qstr table is global to the module (ie not per function). In more detail, in the VM what used to be (schematically): qst = DECODE_QSTR_VALUE; is now (schematically): idx = DECODE_QSTR_INDEX; qst = qstr_table[idx]; That allows the bytecode to be fixed at compile time and not need relinking/rewriting of the qstr values. Only qstr_table needs to be linked when the .mpy is loaded. Incidentally, this helps to reduce the size of bytecode because what used to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices. If the module uses the same qstr more than two times then the bytecode is smaller than before. The following changes are measured for this commit compared to the previous (the baseline): - average 7%-9% reduction in size of .mpy files - frozen code size is reduced by about 5%-7% - importing .py files uses about 5% less RAM in total - importing .mpy files uses about 4% less RAM in total - importing .py and .mpy files takes about the same time as before The qstr indirection in the bytecode has only a small impact on VM performance. For stm32 on PYBv1.0 the performance change of this commit is: diff of scores (higher is better) N=100 M=100 baseline -> this-commit diff diff% (error%) bm_chaos.py 371.07 -> 357.39 : -13.68 = -3.687% (+/-0.02%) bm_fannkuch.py 78.72 -> 77.49 : -1.23 = -1.563% (+/-0.01%) bm_fft.py 2591.73 -> 2539.28 : -52.45 = -2.024% (+/-0.00%) bm_float.py 6034.93 -> 5908.30 : -126.63 = -2.098% (+/-0.01%) bm_hexiom.py 48.96 -> 47.93 : -1.03 = -2.104% (+/-0.00%) bm_nqueens.py 4510.63 -> 4459.94 : -50.69 = -1.124% (+/-0.00%) bm_pidigits.py 650.28 -> 644.96 : -5.32 = -0.818% (+/-0.23%) core_import_mpy_multi.py 564.77 -> 581.49 : +16.72 = +2.960% (+/-0.01%) core_import_mpy_single.py 68.67 -> 67.16 : -1.51 = -2.199% (+/-0.01%) core_qstr.py 64.16 -> 64.12 : -0.04 = -0.062% (+/-0.00%) core_yield_from.py 362.58 -> 354.50 : -8.08 = -2.228% (+/-0.00%) misc_aes.py 429.69 -> 405.59 : -24.10 = -5.609% (+/-0.01%) misc_mandel.py 3485.13 -> 3416.51 : -68.62 = -1.969% (+/-0.00%) misc_pystone.py 2496.53 -> 2405.56 : -90.97 = -3.644% (+/-0.01%) misc_raytrace.py 381.47 -> 374.01 : -7.46 = -1.956% (+/-0.01%) viper_call0.py 576.73 -> 572.49 : -4.24 = -0.735% (+/-0.04%) viper_call1a.py 550.37 -> 546.21 : -4.16 = -0.756% (+/-0.09%) viper_call1b.py 438.23 -> 435.68 : -2.55 = -0.582% (+/-0.06%) viper_call1c.py 442.84 -> 440.04 : -2.80 = -0.632% (+/-0.08%) viper_call2a.py 536.31 -> 532.35 : -3.96 = -0.738% (+/-0.06%) viper_call2b.py 382.34 -> 377.07 : -5.27 = -1.378% (+/-0.03%) And for unix on x64: diff of scores (higher is better) N=2000 M=2000 baseline -> this-commit diff diff% (error%) bm_chaos.py 13594.20 -> 13073.84 : -520.36 = -3.828% (+/-5.44%) bm_fannkuch.py 60.63 -> 59.58 : -1.05 = -1.732% (+/-3.01%) bm_fft.py 112009.15 -> 111603.32 : -405.83 = -0.362% (+/-4.03%) bm_float.py 246202.55 -> 247923.81 : +1721.26 = +0.699% (+/-2.79%) bm_hexiom.py 615.65 -> 617.21 : +1.56 = +0.253% (+/-1.64%) bm_nqueens.py 215807.95 -> 215600.96 : -206.99 = -0.096% (+/-3.52%) bm_pidigits.py 8246.74 -> 8422.82 : +176.08 = +2.135% (+/-3.64%) misc_aes.py 16133.00 -> 16452.74 : +319.74 = +1.982% (+/-1.50%) misc_mandel.py 128146.69 -> 130796.43 : +2649.74 = +2.068% (+/-3.18%) misc_pystone.py 83811.49 -> 83124.85 : -686.64 = -0.819% (+/-1.03%) misc_raytrace.py 21688.02 -> 21385.10 : -302.92 = -1.397% (+/-3.20%) The code size change is (firmware with a lot of frozen code benefits the most): bare-arm: +396 +0.697% minimal x86: +1595 +0.979% [incl +32(data)] unix x64: +2408 +0.470% [incl +800(data)] unix nanbox: +1396 +0.309% [incl -96(data)] stm32: -1256 -0.318% PYBV10 cc3200: +288 +0.157% esp8266: -260 -0.037% GENERIC esp32: -216 -0.014% GENERIC[incl -1072(data)] nrf: +116 +0.067% pca10040 rp2: -664 -0.135% PICO samd: +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS As part of this change the .mpy file format version is bumped to version 6. And mpy-tool.py has been improved to provide a good visualisation of the contents of .mpy files. In summary: this commit changes the bytecode to use qstr indirection, and reworks the .mpy file format to be simpler and allow .mpy files to be executed in-place. Performance is not impacted too much. Eventually it will be possible to store such .mpy files in a linear, read-only, memory- mappable filesystem so they can be executed from flash/ROM. This will essentially be able to replace frozen code for most applications. Signed-off-by: Damien George <damien@micropython.org>
2021-10-22 07:22:47 -04:00
mp_module_context_t context;
mp_obj_fun_bc_t fun_bc;
py: Rework bytecode and .mpy file format to be mostly static data. Background: .mpy files are precompiled .py files, built using mpy-cross, that contain compiled bytecode functions (and can also contain machine code). The benefit of using an .mpy file over a .py file is that they are faster to import and take less memory when importing. They are also smaller on disk. But the real benefit of .mpy files comes when they are frozen into the firmware. This is done by loading the .mpy file during compilation of the firmware and turning it into a set of big C data structures (the job of mpy-tool.py), which are then compiled and downloaded into the ROM of a device. These C data structures can be executed in-place, ie directly from ROM. This makes importing even faster because there is very little to do, and also means such frozen modules take up much less RAM (because their bytecode stays in ROM). The downside of frozen code is that it requires recompiling and reflashing the entire firmware. This can be a big barrier to entry, slows down development time, and makes it harder to do OTA updates of frozen code (because the whole firmware must be updated). This commit attempts to solve this problem by providing a solution that sits between loading .mpy files into RAM and freezing them into the firmware. The .mpy file format has been reworked so that it consists of data and bytecode which is mostly static and ready to run in-place. If these new .mpy files are located in flash/ROM which is memory addressable, the .mpy file can be executed (mostly) in-place. With this approach there is still a small amount of unpacking and linking of the .mpy file that needs to be done when it's imported, but it's still much better than loading an .mpy from disk into RAM (although not as good as freezing .mpy files into the firmware). The main trick to make static .mpy files is to adjust the bytecode so any qstrs that it references now go through a lookup table to convert from local qstr number in the module to global qstr number in the firmware. That means the bytecode does not need linking/rewriting of qstrs when it's loaded. Instead only a small qstr table needs to be built (and put in RAM) at import time. This means the bytecode itself is static/constant and can be used directly if it's in addressable memory. Also the qstr string data in the .mpy file, and some constant object data, can be used directly. Note that the qstr table is global to the module (ie not per function). In more detail, in the VM what used to be (schematically): qst = DECODE_QSTR_VALUE; is now (schematically): idx = DECODE_QSTR_INDEX; qst = qstr_table[idx]; That allows the bytecode to be fixed at compile time and not need relinking/rewriting of the qstr values. Only qstr_table needs to be linked when the .mpy is loaded. Incidentally, this helps to reduce the size of bytecode because what used to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices. If the module uses the same qstr more than two times then the bytecode is smaller than before. The following changes are measured for this commit compared to the previous (the baseline): - average 7%-9% reduction in size of .mpy files - frozen code size is reduced by about 5%-7% - importing .py files uses about 5% less RAM in total - importing .mpy files uses about 4% less RAM in total - importing .py and .mpy files takes about the same time as before The qstr indirection in the bytecode has only a small impact on VM performance. For stm32 on PYBv1.0 the performance change of this commit is: diff of scores (higher is better) N=100 M=100 baseline -> this-commit diff diff% (error%) bm_chaos.py 371.07 -> 357.39 : -13.68 = -3.687% (+/-0.02%) bm_fannkuch.py 78.72 -> 77.49 : -1.23 = -1.563% (+/-0.01%) bm_fft.py 2591.73 -> 2539.28 : -52.45 = -2.024% (+/-0.00%) bm_float.py 6034.93 -> 5908.30 : -126.63 = -2.098% (+/-0.01%) bm_hexiom.py 48.96 -> 47.93 : -1.03 = -2.104% (+/-0.00%) bm_nqueens.py 4510.63 -> 4459.94 : -50.69 = -1.124% (+/-0.00%) bm_pidigits.py 650.28 -> 644.96 : -5.32 = -0.818% (+/-0.23%) core_import_mpy_multi.py 564.77 -> 581.49 : +16.72 = +2.960% (+/-0.01%) core_import_mpy_single.py 68.67 -> 67.16 : -1.51 = -2.199% (+/-0.01%) core_qstr.py 64.16 -> 64.12 : -0.04 = -0.062% (+/-0.00%) core_yield_from.py 362.58 -> 354.50 : -8.08 = -2.228% (+/-0.00%) misc_aes.py 429.69 -> 405.59 : -24.10 = -5.609% (+/-0.01%) misc_mandel.py 3485.13 -> 3416.51 : -68.62 = -1.969% (+/-0.00%) misc_pystone.py 2496.53 -> 2405.56 : -90.97 = -3.644% (+/-0.01%) misc_raytrace.py 381.47 -> 374.01 : -7.46 = -1.956% (+/-0.01%) viper_call0.py 576.73 -> 572.49 : -4.24 = -0.735% (+/-0.04%) viper_call1a.py 550.37 -> 546.21 : -4.16 = -0.756% (+/-0.09%) viper_call1b.py 438.23 -> 435.68 : -2.55 = -0.582% (+/-0.06%) viper_call1c.py 442.84 -> 440.04 : -2.80 = -0.632% (+/-0.08%) viper_call2a.py 536.31 -> 532.35 : -3.96 = -0.738% (+/-0.06%) viper_call2b.py 382.34 -> 377.07 : -5.27 = -1.378% (+/-0.03%) And for unix on x64: diff of scores (higher is better) N=2000 M=2000 baseline -> this-commit diff diff% (error%) bm_chaos.py 13594.20 -> 13073.84 : -520.36 = -3.828% (+/-5.44%) bm_fannkuch.py 60.63 -> 59.58 : -1.05 = -1.732% (+/-3.01%) bm_fft.py 112009.15 -> 111603.32 : -405.83 = -0.362% (+/-4.03%) bm_float.py 246202.55 -> 247923.81 : +1721.26 = +0.699% (+/-2.79%) bm_hexiom.py 615.65 -> 617.21 : +1.56 = +0.253% (+/-1.64%) bm_nqueens.py 215807.95 -> 215600.96 : -206.99 = -0.096% (+/-3.52%) bm_pidigits.py 8246.74 -> 8422.82 : +176.08 = +2.135% (+/-3.64%) misc_aes.py 16133.00 -> 16452.74 : +319.74 = +1.982% (+/-1.50%) misc_mandel.py 128146.69 -> 130796.43 : +2649.74 = +2.068% (+/-3.18%) misc_pystone.py 83811.49 -> 83124.85 : -686.64 = -0.819% (+/-1.03%) misc_raytrace.py 21688.02 -> 21385.10 : -302.92 = -1.397% (+/-3.20%) The code size change is (firmware with a lot of frozen code benefits the most): bare-arm: +396 +0.697% minimal x86: +1595 +0.979% [incl +32(data)] unix x64: +2408 +0.470% [incl +800(data)] unix nanbox: +1396 +0.309% [incl -96(data)] stm32: -1256 -0.318% PYBV10 cc3200: +288 +0.157% esp8266: -260 -0.037% GENERIC esp32: -216 -0.014% GENERIC[incl -1072(data)] nrf: +116 +0.067% pca10040 rp2: -664 -0.135% PICO samd: +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS As part of this change the .mpy file format version is bumped to version 6. And mpy-tool.py has been improved to provide a good visualisation of the contents of .mpy files. In summary: this commit changes the bytecode to use qstr indirection, and reworks the .mpy file format to be simpler and allow .mpy files to be executed in-place. Performance is not impacted too much. Eventually it will be possible to store such .mpy files in a linear, read-only, memory- mappable filesystem so they can be executed from flash/ROM. This will essentially be able to replace frozen code for most applications. Signed-off-by: Damien George <damien@micropython.org>
2021-10-22 07:22:47 -04:00
fun_bc.context = &context;
fun_bc.child_table = NULL;
fun_bc.bytecode = (const byte *)"\x01"; // just needed for n_state
mp_code_state_t *code_state = m_new_obj_var(mp_code_state_t, mp_obj_t, 1);
code_state->fun_bc = &fun_bc;
code_state->ip = (const byte *)"\x00"; // just needed for an invalid opcode
code_state->sp = &code_state->state[0];
code_state->exc_sp_idx = 0;
code_state->old_globals = NULL;
mp_vm_return_kind_t ret = mp_execute_bytecode(code_state, MP_OBJ_NULL);
mp_printf(&mp_plat_print, "%d %d\n", ret, mp_obj_get_type(code_state->state[0]) == &mp_type_NotImplementedError);
}
// scheduler
{
mp_printf(&mp_plat_print, "# scheduler\n");
// lock scheduler
mp_sched_lock();
// schedule multiple callbacks; last one should fail
for (int i = 0; i < 5; ++i) {
mp_printf(&mp_plat_print, "sched(%d)=%d\n", i, mp_sched_schedule(MP_OBJ_FROM_PTR(&mp_builtin_print_obj), MP_OBJ_NEW_SMALL_INT(i)));
}
// test nested locking/unlocking
mp_sched_lock();
mp_sched_unlock();
// shouldn't do anything while scheduler is locked
mp_handle_pending(true);
// unlock scheduler
mp_sched_unlock();
mp_printf(&mp_plat_print, "unlocked\n");
// drain pending callbacks
while (mp_sched_num_pending()) {
mp_handle_pending(true);
}
// setting the keyboard interrupt and raising it during mp_handle_pending
mp_sched_keyboard_interrupt();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_handle_pending(true);
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
// setting the keyboard interrupt (twice) and cancelling it during mp_handle_pending
mp_sched_keyboard_interrupt();
mp_sched_keyboard_interrupt();
mp_handle_pending(false);
// setting keyboard interrupt and a pending event (intr should be handled first)
mp_sched_schedule(MP_OBJ_FROM_PTR(&mp_builtin_print_obj), MP_OBJ_NEW_SMALL_INT(10));
mp_sched_keyboard_interrupt();
if (nlr_push(&nlr) == 0) {
mp_handle_pending(true);
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
mp_handle_pending(true);
}
// ringbuf
{
2023-10-05 20:03:42 -04:00
#define RINGBUF_SIZE 99
byte buf[RINGBUF_SIZE];
ringbuf_t ringbuf;
ringbuf_init(&ringbuf, buf, sizeof(buf));
mp_printf(&mp_plat_print, "# ringbuf\n");
// Single-byte put/get with empty ringbuf.
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
ringbuf_put(&ringbuf, 22);
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
mp_printf(&mp_plat_print, "%d\n", ringbuf_get(&ringbuf));
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
// Two-byte put/get with empty ringbuf.
ringbuf_put16(&ringbuf, 0xaa55);
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf));
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
// Two-byte put with full ringbuf.
2023-10-05 20:03:42 -04:00
for (int i = 0; i < RINGBUF_SIZE; ++i) {
ringbuf_put(&ringbuf, i);
}
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x11bb));
// Two-byte put with one byte free.
ringbuf_get(&ringbuf);
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x3377));
ringbuf_get(&ringbuf);
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0xcc99));
2023-10-05 20:03:42 -04:00
for (int i = 0; i < RINGBUF_SIZE - 2; ++i) {
ringbuf_get(&ringbuf);
}
mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf));
2023-09-22 14:38:56 -04:00
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_num_empty(&ringbuf), ringbuf_num_filled(&ringbuf));
// Two-byte put with wrap around on first byte:
2023-09-22 14:38:56 -04:00
ringbuf_clear(&ringbuf);
2023-10-05 20:03:42 -04:00
for (int i = 0; i < RINGBUF_SIZE; ++i) {
ringbuf_put(&ringbuf, i);
ringbuf_get(&ringbuf);
}
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x11bb));
mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf));
// Two-byte put with wrap around on second byte:
2023-09-22 14:38:56 -04:00
ringbuf_clear(&ringbuf);
2023-10-05 20:03:42 -04:00
for (int i = 0; i < RINGBUF_SIZE - 1; ++i) {
ringbuf_put(&ringbuf, i);
ringbuf_get(&ringbuf);
}
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x22ff));
mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf));
// Two-byte get from empty ringbuf.
2023-09-22 14:38:56 -04:00
ringbuf_clear(&ringbuf);
mp_printf(&mp_plat_print, "%d\n", ringbuf_get16(&ringbuf));
// Two-byte get from ringbuf with one byte available.
2023-09-22 14:38:56 -04:00
ringbuf_clear(&ringbuf);
ringbuf_put(&ringbuf, 0xaa);
mp_printf(&mp_plat_print, "%d\n", ringbuf_get16(&ringbuf));
}
// pairheap
{
mp_printf(&mp_plat_print, "# pairheap\n");
// Basic case.
int t0[] = {0, 2, 1, 3};
pairheap_test(MP_ARRAY_SIZE(t0), t0);
// All pushed in reverse order.
int t1[] = {7, 6, 5, 4, 3, 2, 1, 0};
pairheap_test(MP_ARRAY_SIZE(t1), t1);
// Basic deletion.
int t2[] = {1, -1, -1, 1, 2, -2, 2, 3, -3};
pairheap_test(MP_ARRAY_SIZE(t2), t2);
// Deletion of first child that has next node (the -3).
int t3[] = {1, 2, 3, 4, -1, -3};
pairheap_test(MP_ARRAY_SIZE(t3), t3);
// Deletion of node that's not first child (the -2).
int t4[] = {1, 2, 3, 4, -2};
pairheap_test(MP_ARRAY_SIZE(t4), t4);
// Deletion of node that's not first child and has children (the -3).
int t5[] = {3, 4, 5, 1, 2, -3};
pairheap_test(MP_ARRAY_SIZE(t5), t5);
}
// mp_obj_is_type and derivatives
{
mp_printf(&mp_plat_print, "# mp_obj_is_type\n");
// mp_obj_is_bool accepts only booleans
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_bool(mp_const_true), mp_obj_is_bool(mp_const_false));
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_bool(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_bool(mp_const_none));
// mp_obj_is_integer accepts ints and booleans
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_integer(mp_obj_new_int_from_ll(1)));
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(mp_const_true), mp_obj_is_integer(mp_const_false));
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(mp_obj_new_str("1", 1)), mp_obj_is_integer(mp_const_none));
// mp_obj_is_int accepts small int and object ints
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_int(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_int(mp_obj_new_int_from_ll(1)));
}
mp_printf(&mp_plat_print, "# end coverage.c\n");
mp_obj_streamtest_t *s = mp_obj_malloc(mp_obj_streamtest_t, &mp_type_stest_fileio);
2017-01-15 23:04:53 -05:00
s->buf = NULL;
s->len = 0;
s->pos = 0;
s->error_code = 0;
mp_obj_streamtest_t *s2 = mp_obj_malloc(mp_obj_streamtest_t, &mp_type_stest_textio2);
2017-01-15 23:04:53 -05:00
// return a tuple of data for testing on the Python side
2017-01-15 23:04:53 -05:00
mp_obj_t items[] = {(mp_obj_t)&str_no_hash_obj, (mp_obj_t)&bytes_no_hash_obj, MP_OBJ_FROM_PTR(s), MP_OBJ_FROM_PTR(s2)};
return mp_obj_new_tuple(MP_ARRAY_SIZE(items), items);
}
MP_DEFINE_CONST_FUN_OBJ_0(extra_coverage_obj, extra_coverage);
#endif