circuitpython/atmel-samd/asf/sam0/drivers/tcc/tcc.h

2495 lines
79 KiB
C
Raw Normal View History

/**
* \file
*
* \brief SAM TCC - Timer Counter for Control Applications Driver
*
* Copyright (C) 2013-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef TCC_H_INCLUDED
#define TCC_H_INCLUDED
/**
* \defgroup asfdoc_sam0_tcc_group SAM Timer Counter for Control Applications (TCC) Driver
*
* This driver for Atmel&reg; | SMART ARM&reg;-based microcontrollers provides an interface for the configuration
* and management of the TCC module within the device, for waveform
* generation and timing operations. It also provides extended options for
* control applications.
*
* The following driver API modes are covered
* by this manual:
*
* - Polled APIs
* \if TCC_CALLBACK_MODE
* - Callback APIs
* \endif
*
* The following peripheral is used by this module:
* - TCC (Timer/Counter for Control Applications)
*
* The following devices can use this module:
* - Atmel | SMART SAM D21
* - Atmel | SMART SAM R21
* - Atmel | SMART SAM D10/D11
* - Atmel | SMART SAM L21/L22
* - Atmel | SMART SAM DA1
* - Atmel | SMART SAM C20/C21
* - Atmel | SMART SAM R30
*
* The outline of this documentation is as follows:
* - \ref asfdoc_sam0_tcc_prerequisites
* - \ref asfdoc_sam0_tcc_module_overview
* - \ref asfdoc_sam0_tcc_special_considerations
* - \ref asfdoc_sam0_tcc_extra_info
* - \ref asfdoc_sam0_tcc_examples
* - \ref asfdoc_sam0_tcc_api_overview
*
* \section asfdoc_sam0_tcc_prerequisites Prerequisites
*
* There are no prerequisites for this module.
*
* \section asfdoc_sam0_tcc_module_overview Module Overview
*
* The Timer/Counter for Control Applications (TCC) module provides a set of
* timing and counting related functionality, such as the generation of periodic
* waveforms, the capturing of a periodic waveform's frequency/duty cycle,
* software timekeeping for periodic operations, waveform extension control,
* fault detection etc.
*
* The counter size of the TCC modules can be 16- or 24-bit depending on
* the TCC instance.
* Refer \ref asfdoc_sam0_tcc_special_considerations_tcc_d21 and
* \ref asfdoc_sam0_tcc_special_considerations_tcc_d11 for details on TCC instances.
*
* The TCC module for the SAM includes the following functions:
*
* - Generation of PWM signals
* - Generation of timestamps for events
* - General time counting
* - Waveform period capture
* - Waveform frequency capture
* - Additional control for generated waveform outputs
* - Fault protection for waveform generation
*
* \ref asfdoc_sam0_tcc_block_diagram "The diagram below" shows the overview
* of the TCC Module.
*
* \anchor asfdoc_sam0_tcc_block_diagram
* \image html overview.svg "Overview of the TCC Module"
*
* \subsection asfdoc_sam0_tcc_module_overview_parts Functional Description
* The TCC module consists of following sections:
* - Base Counter
* - Compare/Capture channels, with waveform generation
* - Waveform extension control and fault detection
* - Interface to the event system, DMAC, and the interrupt system
*
* The base counter can be configured to either count a prescaled generic
* clock or events from the event system.(TCEx, with event action configured
* to counting).
* The counter value can be used by compare/capture channels which can be
* set up either in compare mode or capture mode.
*
* In capture mode, the counter value is stored when a configurable event
* occurs. This mode can be used to generate timestamps used in event capture,
* or it can be used for the measurement of a periodic input signal's
* frequency/duty cycle.
*
* In compare mode, the counter value is compared against one or more of the
* configured channels' compare values. When the counter value coincides with a
* compare value an action can be taken automatically by the module, such as
* generating an output event or toggling a pin when used for frequency or PWM
* signal generation.
*
* \note The connection of events between modules requires the use of the
* \ref asfdoc_sam0_events_group "SAM Event System Driver (EVENTS)"
* to route output event of one module to the the input event of another.
* For more information on event routing, refer to the event driver
* documentation.
*
* In compare mode, when output signal is generated, extended waveform controls
* are available, to arrange the compare outputs into specific formats.
* The Output matrix can change the channel output routing. Pattern generation
* unit can overwrite the output signal line to specific state.
* The Fault protection feature of the TCC supports recoverable and
* non-recoverable faults.
*
* \subsection asfdoc_sam0_tcc_module_overview_tc Base Timer/Counter
*
* \subsubsection asfdoc_sam0_tcc_module_overview_tc_size Timer/Counter Size
* Each TCC has a counter size of either 16- or 24-bits. The size of the
* counter determines the maximum value it can count to before an overflow
* occurs.
* \ref asfdoc_sam0_tcc_count_size_vs_top "The table below" shows the
* maximum values for each of the possible counter sizes.
*
* \anchor asfdoc_sam0_tcc_count_size_vs_top
* <table>
* <caption>Timer Counter Sizes and Their Maximum Count Values</caption>
* <tr>
* <th>Counter size</th>
* <th>Max. (hexadecimal)</th>
* <th>Max. (decimal)</th>
* </tr>
* <tr>
* <td>16-bit</td>
* <td>0xFFFF</td>
* <td>65,535</td>
* </tr>
* <tr>
* <td>24-bit</td>
* <td>0xFFFFFF</td>
* <td>16,777,215</td>
* </tr>
* </table>
*
* The period/top value of the counter can be set, to define counting period.
* This will allow the counter to overflow when the counter value reaches the
* period/top value.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_tc_clk Timer/Counter Clock and Prescaler
* TCC is clocked asynchronously to the system clock by a GCLK
* (Generic Clock) channel. The GCLK channel can be connected to any of the GCLK
* generators. The GCLK generators are configured to use one of the available
* clock sources in the system such as internal oscillator, external crystals,
* etc. See the \ref asfdoc_sam0_system_clock_group "Generic Clock driver" for
* more information.
*
* Each TCC module in the SAM has its own individual clock prescaler, which
* can be used to divide the input clock frequency used by the counter. This
* prescaler only scales the clock used to provide clock pulses for the counter
* to count, and does not affect the digital register interface portion of
* the module, thus the timer registers will be synchronized to the raw GCLK
* frequency input to the module.
*
* As a result of this, when selecting a GCLK frequency and timer prescaler
* value, the user application should consider both the timer resolution
* required and the synchronization frequency to avoid lengthy
* synchronization times of the module if a very slow GCLK frequency is fed
* into the TCC module. It is preferable to use a higher module GCLK frequency
* as the input to the timer, and prescale this down as much as possible to
* obtain a suitable counter frequency in latency-sensitive applications.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_tc_ctrl Timer/Counter Control Inputs (Events)
*
* The TCC can take several actions on the occurrence of an input event.
* The event actions are listed
* in \ref asfdoc_sam0_tcc_module_event_act "events action settings".
*
* \anchor asfdoc_sam0_tcc_module_event_act
* <table>
* <caption>TCC Module Event Actions</caption>
* <tr>
* <th>Event action</th>
* <th>Description</th>
* <th>Applied event</th>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_OFF</td>
* <td>No action on the event input</td>
* <td>All</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_RETRIGGER</td>
* <td>Re-trigger Counter on event</td>
* <td>All</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_NON_RECOVERABLE_FAULT</td>
* <td>Generate Non-Recoverable Fault on event</td>
* <td>All</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_START</td>
* <td>Counter start on event</td>
* <td>EV0</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_DIR_CONTROL</td>
* <td>Counter direction control</td>
* <td>EV0</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_DECREMENT</td>
* <td>Counter decrement on event</td>
* <td>EV0</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_PERIOD_PULSE_WIDTH_CAPTURE</td>
* <td>Capture pulse period and pulse width</td>
* <td>EV0</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_PULSE_WIDTH_PERIOD_CAPTURE</td>
* <td>Capture pulse width and pulse period</td>
* <td>EV0</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_STOP</td>
* <td>Counter stop on event</td>
* <td>EV1</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_COUNT_EVENT</td>
* <td>Counter count on event</td>
* <td>EV1</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_INCREMENT</td>
* <td>Counter increment on event</td>
* <td>EV1</td>
* </tr>
* <tr>
* <td>TCC_EVENT_ACTION_COUNT_DURING_ACTIVE</td>
* <td>Counter count during active state of asynchronous event</td>
* <td>EV1</td>
* </tr>
* </table>
*
* \subsubsection asfdoc_sam0_tcc_module_overview_tc_reload Timer/Counter Reloading
*
* The TCC also has a configurable reload action, used when a
* re-trigger event occurs. Examples of a re-trigger event could be the counter
* reaching the maximum value when counting up, or when an event from the event
* system makes the counter to re-trigger. The reload action determines if the
* prescaler should be reset, and on which clock. The counter will
* always be reloaded with the value it is set to start counting. The user
* can choose between three different reload actions, described in
* \ref asfdoc_sam0_tcc_module_reload_act "the table below".
*
* \anchor asfdoc_sam0_tcc_module_reload_act
* <table>
* <caption>TCC Module Reload Actions</caption>
* <tr>
* <th>Reload action</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>TCC_RELOAD_ACTION_GCLK</td>
* <td>Reload TCC counter value on next GCLK cycle. Leave prescaler
* as-is.</td>
* </tr>
* <tr>
* <td>TCC_RELOAD_ACTION_PRESC</td>
* <td>Reloads TCC counter value on next prescaler clock. Leave prescaler
* as-is.</td>
* </tr>
* <tr>
* <td>TCC_RELOAD_ACTION_RESYNC</td>
* <td>Reload TCC counter value on next GCLK cycle. Clear prescaler to
* zero.</td>
* </tr>
* </table>
*
* The reload action to use will depend on the specific application being
* implemented. One example is when an external trigger for a reload occurs; if
* the TCC uses the prescaler, the counter in the prescaler should not have a
* value between zero and the division factor. The counter in the TCC module
* and the counter in the prescaler should both start at zero.
* If the counter is set to re-trigger when it reaches the maximum value,
* this is not the right option to use. In such a case it would be better if
* the prescaler is left unaltered when the re-trigger happens, letting the
* counter reset on the next GCLK cycle.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_tc_oneshot One-shot Mode
*
* The TCC module can be configured in one-shot mode. When configured in this
* manner, starting the timer will cause it to count until the next overflow
* or underflow condition before automatically halting, waiting to be manually
* triggered by the user application software or an event from the event
* system.
*
* \subsection asfdoc_sam0_tcc_module_overview_capt Capture Operations
*
* In capture operations, any event from the event system or a pin change can
* trigger a capture of the counter value. This captured counter value can be
* used as timestamps for the events, or it can be used in frequency and pulse
* width capture.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_capt_ev Capture Operations - Event
*
* Event capture is a simple use of the capture functionality,
* designed to create timestamps for specific events. When the input event
* appears, the current counter value is copied into the corresponding
* compare/capture register, which can then be read by the user application.
*
* Note that when performing any capture operation, there is a risk that the
* counter reaches its top value (MAX) when counting up, or the bottom value
* (zero) when counting down, before the capture event occurs. This can distort
* the result, making event timestamps to appear shorter than they really are.
* In this case, the user application should check for timer overflow when
* reading a capture result in order to detect this situation and perform an
* appropriate adjustment.
*
* Before checking for a new capture, \ref TCC_STATUS_COUNT_OVERFLOW
* should be checked. The response to an overflow error is left to the user
* application, however, it may be necessary to clear both the overflow
* flag and the capture flag upon each capture reading.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_capt_pulse Capture Operations - Pulse Width
*
* Pulse Width Capture mode makes it possible to measure the pulse width and
* period of PWM signals. This mode uses two capture channels of the counter.
* There are two modes for pulse width capture;
* Pulse Width Period (PWP) and Period Pulse Width (PPW). In PWP mode, capture
* channel 0 is used for storing the pulse width and capture channel 1 stores
* the observed period. While in PPW mode, the roles of the two capture channels
* are reversed.
*
* As in the above example it is necessary to poll on interrupt flags to see
* if a new capture has happened and check that a capture overflow error has
* not occurred.
*
* Refer to \ref asfdoc_sam0_tcc_module_overview_tc_ctrl to set up the input
* event to perform pulse width capture.
*
* \subsection asfdoc_sam0_tcc_module_overview_mc Compare Match Operation
*
* In compare match operation, Compare/Capture registers are compared
* with the counter value. When the timer's count value matches the value of a
* compare channel, a user defined action can be taken.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_mc_timer Basic Timer
*
* A Basic Timer is a simple application where compare match operation is used
* to determine when a specific period has elapsed. In Basic Timer operations,
* one or more values in the module's Compare/Capture registers are used to
* specify the time (in terms of the number of prescaled GCLK cycles, or
* input events) at which
* an action should be taken by the microcontroller. This can be an Interrupt
* Service Routine (ISR), event generation via the event system, or a software
* flag that is polled from the user application.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_mc_wave Waveform Generation
*
* Waveform generation enables the TCC module to generate square waves, or, if
* combined with an external passive low-pass filter, analog waveforms.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_mc_wave_pwm Waveform Generation - PWM
*
* Pulse width modulation is a form of waveform generation and a signalling
* technique that can be useful in many applications. When PWM mode is used,
* a digital pulse train with a configurable frequency and duty cycle can be
* generated by the TCC module and output to a GPIO pin of the device.
*
* Often PWM is used to communicate a control or information parameter to an
* external circuit or component. Differing impedances of the source generator
* and sink receiver circuits is less of an issue when using PWM compared to
* using an analog voltage value, as noise will not generally affect the
* signal's integrity to a meaningful extent.
*
* \ref asfdoc_sam0_tcc_module_pwm_single_diag "The figure below" illustrates
* operations and different states of the counter and its output when using
* the timer in Normal PWM mode (Single Slope). As can be seen, the TOP/PERIOD
* value is
* unchanged and is set to MAX. The compare match value is changed at several
* points to illustrate the resulting waveform output changes. The PWM output is
* set to normal (i.e. non-inverted) output mode.
*
* \anchor asfdoc_sam0_tcc_module_pwm_single_diag
* \image html pwm_single_ex.svg "Example Of PWM In Single-Slope Mode, and Different Counter Operations"
*
* Several PWM modes are supported by the TCC module, refer to
* datasheet for the details on PWM waveform generation.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_mc_wave_freq Waveform Generation - Frequency
*
* Normal Frequency Generation is in many ways identical to PWM generation.
* However, only in Frequency Generation, a toggle occurs on the output when a
* match on a compare channels occurs.
*
* When the Match Frequency Generation is used, the timer value is reset on
* match condition, resulting in a variable frequency square wave with a
* fixed 50% duty cycle.
*
* \subsection asfdoc_sam0_tcc_module_overview_ext Waveform Extended Controls
*
* \subsubsection asfdoc_sam0_tcc_module_overview_ext_pat Pattern Generation
*
* Pattern insertion allows the TCC module to change the actual pin output level
* without modifying the compare/match settings.
*
* \anchor asfdoc_sam0_tcc_module_pattern_gen
* <table>
* <caption>TCC Module Output Pattern Generation</caption>
* <tr>
* <th>Pattern</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>TCC_OUTPUT_PATTERN_DISABLE</td>
* <td>Pattern disabled, generate output as is</td>
* </tr>
* <tr>
* <td>TCC_OUTPUT_PATTERN_0</td>
* <td>Generate pattern 0 on output (keep the output LOW)</td>
* </tr>
* <tr>
* <td>TCC_OUTPUT_PATTERN_1</td>
* <td>Generate pattern 1 on output (keep the output HIGH)</td>
* </tr>
* </table>
*
* \subsubsection asfdoc_sam0_tcc_module_overview_ext_r_fault Recoverable Faults
*
* The recoverable faults can trigger one or several of following fault actions:
* -# *Halt* action: The recoverable faults can halt the TCC timer/counter,
* so that the final output wave is kept at a defined state. When the fault
* state is removed it is possible to recover the counter and waveform
* generation. The halt action is defined as:
* \anchor asfdoc_sam0_tcc_module_fault_halt_action
* <table>
* <caption>TCC Module Recoverable Fault Halt Actions</caption>
* <tr>
* <th>Action</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>TCC_FAULT_HALT_ACTION_DISABLE</td>
* <td>Halt action is disabled</td>
* </tr>
* <tr>
* <td>TCC_FAULT_HALT_ACTION_HW_HALT</td>
* <td>The timer/counter is halted as long as the corresponding fault is
* present</td>
* </tr>
* <tr>
* <td>TCC_FAULT_HALT_ACTION_SW_HALT</td>
* <td>The timer/counter is halted until the corresponding fault is removed
* and fault state cleared by software</td>
* </tr>
* <tr>
* <td>TCC_FAULT_HALT_ACTION_NON_RECOVERABLE</td>
* <td>Force all the TCC output pins to a pre-defined level, as what
* Non-Recoverable Fault do</td>
* </tr>
* </table>
* -# *Restart* action: When enabled, the recoverable faults can restart the TCC
* timer/counter.
* -# *Keep* action: When enabled, the recoverable faults can keep the
* corresponding channel output to zero when the fault condition is present.
* -# *Capture* action: When the recoverable fault occurs, the capture action can
* time stamps the corresponding fault. The following capture mode is
* supported:
* \anchor asfdoc_sam0_tcc_module_fault_capt_action
* <table>
* <caption>TCC Module Recoverable Fault Capture Actions</caption>
* <tr>
* <th>Action</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>TCC_FAULT_CAPTURE_DISABLE</td>
* <td>Capture action is disabled</td>
* </tr>
* <tr>
* <td>TCC_FAULT_CAPTURE_EACH</td>
* <td>Equivalent to standard capture operation, on each fault occurrence
* the time stamp is captured</td>
* </tr>
* <tr>
* <td>TCC_FAULT_CAPTURE_MINIMUM</td>
* <td>Get the minimum time stamped value in all time stamps</td>
* </tr>
* <tr>
* <td>TCC_FAULT_CAPTURE_MAXIMUM</td>
* <td>Get the maximum time stamped value in all time stamps</td>
* </tr>
* <tr>
* <td>TCC_FAULT_CAPTURE_SMALLER</td>
* <td>Time stamp the fault input if the value is smaller than last one</td>
* </tr>
* <tr>
* <td>TCC_FAULT_CAPTURE_BIGGER</td>
* <td>Time stamp the fault input if the value is bigger than last one</td>
* </tr>
* <tr>
* <td>TCC_FAULT_CAPTURE_CHANGE</td>
* <td>Time stamp the fault input if the time stamps changes its increment
* direction</td>
* </tr>
* </table>
*
* In TCC module, only the first two compare channels (CC0 and CC1) can work
* with recoverable fault inputs. The corresponding event inputs (TCCx MC0
* and TCCx MC1) are then used as fault inputs respectively.
* The faults are called Fault A and Fault B.
*
* The recoverable fault can be filtered or effected by corresponding channel
* output. On fault condition there are many other settings that can be chosen.
* Refer to data sheet for more details about the recoverable fault
* operations.
*
* \subsubsection asfdoc_sam0_tcc_module_overview_ext_n_fault Non-Recoverable Faults
*
* The non-recoverable faults force all the TCC output pins to a pre-defined
* level (can be forced to 0 or 1). The input control signal of non-recoverable
* fault is from timer/counter event (TCCx EV0 and TCCx EV1).
* To enable non-recoverable fault,
* corresponding TCEx event action must be set to non-recoverable fault action
* (\ref TCC_EVENT_ACTION_NON_RECOVERABLE_FAULT).
* Refer to \ref asfdoc_sam0_tcc_module_overview_tc_ctrl to see the available
* event input action.
*
* \subsection asfdoc_sam0_tcc_module_overview_buffering Double and Circular Buffering
*
* The pattern, period, and the compare channels registers are double buffered.
* For these options there are effective registers (PATT, PER, and CCx) and
* buffer registers (PATTB, PERB, and CCx). When writing to the buffer
* registers, the values are buffered and will be committed to effective
* registers on UPDATE condition.
*
* Usually the buffered value is cleared after it is committed, but there is also
* an option to circular the register buffers. The period (PER) and four lowest
* compare channels register (CCx, x is 0 ~ 3) support this function. When
* circular buffer is used, on UPDATE the previous period or compare values are
* copied back into the corresponding period buffer and compare buffers.
* This way, the register value and its buffer register value is actually
* switched on UPDATE condition, and will be switched back on next UPDATE
* condition.
*
* For input capture, the buffer register (CCBx) and the corresponding capture
* channel register (CCx) act like a FIFO. When regular register (CCx) is empty
* or read, any content in the buffer register is passed to regular one.
*
* In TCC module driver, when the double buffering write is enabled, any
* write through \ref tcc_set_top_value(), \ref tcc_set_compare_value(), and
* \ref tcc_set_pattern() will be done to the corresponding buffer register.
* Then the value in the buffer register will be transferred to the regular
* register on the next UPDATE condition or by a force UPDATE using
* \ref tcc_force_double_buffer_update().
*
* \subsection asfdoc_sam0_tcc_module_overview_sleep Sleep Mode
*
* TCC modules can be configured to operate in any sleep mode, with its "run
* in standby" function enabled. It can wake up the device using interrupts or
* perform internal actions with the help of the Event System.
*
* \section asfdoc_sam0_tcc_special_considerations Special Considerations
*
* \subsection asfdoc_sam0_tcc_special_considerations_specific_features Driver Feature Macro Definition
* \ref asfdoc_sam0_tcc_feature_table "The table below" shows some specific features
* of the TCC Module.
*
* \anchor asfdoc_sam0_tcc_feature_table
* <table>
* <caption>TCC Module Specific Features</caption>
* <tr>
* <th>Driver Feature Macro</th>
* <th>Supported devices</th>
* </tr>
* <tr>
* <td>FEATURE_TCC_GENERATE_DMA_TRIGGER</td>
* <td>SAM L21/L22/R30</td>
* </tr>
* </table>
*
* \note The specific features are only available in the driver when the
* selected device supports those features.
*
* \subsection asfdoc_sam0_tcc_special_considerations_tcc_feature Module Features
*
* The features of TCC, such as timer/counter size, number of compare capture
* channels, and number of outputs, are dependent on the TCC module instance being
* used.
*
* \subsubsection asfdoc_sam0_tcc_special_considerations_tcc_d21 SAM TCC Feature List
* For SAM D21/R21/L21/L22/DA1/C21/R30, the TCC features are:
* \anchor asfdoc_sam0_tcc_features_d21
* <table>
* <caption>TCC module features for SAM D21/R21/L21/L22/DA1/C21/R30</caption>
* <tr>
* <th>TCC#</th>
* <th>Match/Capture channels</th>
* <th>Wave outputs</th>
* <th>Counter size [bits]</th>
* <th>Fault</th>
* <th>Dithering</th>
* <th>Output matrix</th>
* <th>Dead-Time insertion</th>
* <th>SWAP</th>
* <th>Pattern</th>
* </tr>
* <tr>
* <td>0</td>
* <td>4</td>
* <td>8</td>
* <td>24</td>
* <td>Y</td>
* <td>Y</td>
* <td>Y</td>
* <td>Y</td>
* <td>Y</td>
* <td>Y</td>
* </tr>
* <tr>
* <td>1</td>
* <td>2</td>
* <td>4</td>
* <td>24</td>
* <td>Y</td>
* <td>Y</td>
* <td></td>
* <td></td>
* <td></td>
* <td>Y</td>
* </tr>
* <tr>
* <td>2</td>
* <td>2</td>
* <td>2</td>
* <td>16</td>
* <td>Y</td>
* <td></td>
* <td></td>
* <td></td>
* <td></td>
* <td></td>
* </tr>
* </table>
*
* \subsubsection asfdoc_sam0_tcc_special_considerations_tcc_d11 SAM D10/D11 TCC Feature List
* For SAM D10/D11, the TCC features are:
* \anchor asfdoc_sam0_tcc_features_d11
* <table>
* <caption>TCC Module Features For SAM D10/D11</caption>
* <tr>
* <th>TCC#</th>
* <th>Match/Capture channels</th>
* <th>Wave outputs</th>
* <th>Counter size [bits]</th>
* <th>Fault</th>
* <th>Dithering</th>
* <th>Output matrix</th>
* <th>Dead-Time insertion</th>
* <th>SWAP</th>
* <th>Pattern</th>
* </tr>
* <tr>
* <td>0</td>
* <td>4</td>
* <td>8</td>
* <td>24</td>
* <td>Y</td>
* <td>Y</td>
* <td>Y</td>
* <td>Y</td>
* <td>Y</td>
* <td>Y</td>
* </tr>
* </table>
*
* \subsection asfdoc_sam0_tcc_special_considerations_tcc_pin Channels vs. Pinouts
*
* As the TCC module may have more waveform output pins than the number of
* compare/capture channels, the free pins (with number higher than number of
* channels) will reuse the waveform generated by channels subsequently. E.g.,
* if the number of channels is four and the number of wave output pins is eight, channel
* 0 output will be available on out pin 0 and 4, channel 1 output
* on wave out pin 1 and 5, and so on.
*
* \section asfdoc_sam0_tcc_extra_info Extra Information
*
* For extra information, see \ref asfdoc_sam0_tcc_extra. This includes:
* - \ref asfdoc_sam0_tcc_extra_acronyms
* - \ref asfdoc_sam0_tcc_extra_dependencies
* - \ref asfdoc_sam0_tcc_extra_errata
* - \ref asfdoc_sam0_tcc_extra_history
*
*
* \section asfdoc_sam0_tcc_examples Examples
*
* For a list of examples related to this driver, see
* \ref asfdoc_sam0_tcc_exqsg.
*
* \section asfdoc_sam0_tcc_api_overview API Overview
* @{
*/
#include <compiler.h>
#include <clock.h>
#include <gclk.h>
#include <pinmux.h>
/** Maximum number of channels supported by the driver
* (Channel index from 0 to \c TCC_NUM_CHANNELS - 1).
*/
#define TCC_NUM_CHANNELS 4
/** Maximum number of wave outputs lines supported by the driver
* (Output line index from 0 to \c TCC_NUM_WAVE_OUTPUTS - 1).
*/
#define TCC_NUM_WAVE_OUTPUTS 8
/** Maximum number of (recoverable) faults supported by the driver. */
#define TCC_NUM_FAULTS 2
#if TCC_ASYNC == true
# include <system_interrupt.h>
#endif
/**
* \name Driver Feature Definition
* Define port features set according to different device family.
* @{
*/
#if (SAML21) || (SAML22) || (SAMR30) || defined(__DOXYGEN__)
/** Generate DMA triggers */
# define FEATURE_TCC_GENERATE_DMA_TRIGGER
#endif
/*@}*/
#ifdef __cplusplus
extern "C" {
#endif
/** Generates a table enum list entry for a given type
and index (e.g. "TCC_CALLBACK_MC_CHANNEL_0,"). */
#define _TCC_ENUM(n, type) TCC_##type##_##n,
/** Generates table enum list entries for all channels of a
given type and channel number on TCC module. */
#define _TCC_CHANNEL_ENUM_LIST(type) \
MREPEAT(TCC_NUM_CHANNELS, _TCC_ENUM, type##_CHANNEL)
/** Generates table enum list entries for all output of a
given type and waveform output number on TCC module. */
#define _TCC_WO_ENUM_LIST(type) \
MREPEAT(TCC_NUM_WAVE_OUTPUTS, _TCC_ENUM, type)
#if TCC_ASYNC == true
/** Enum for the possible callback types for the TCC module. */
enum tcc_callback {
/** Callback for TCC overflow */
TCC_CALLBACK_OVERFLOW,
/** Callback for TCC Retrigger */
TCC_CALLBACK_RETRIGGER,
/** Callback for TCC counter event */
TCC_CALLBACK_COUNTER_EVENT,
/** Callback for capture overflow error */
TCC_CALLBACK_ERROR,
/** Callback for Recoverable Fault A */
TCC_CALLBACK_FAULTA,
/** Callback for Recoverable Fault B */
TCC_CALLBACK_FAULTB,
/** Callback for Non-Recoverable Fault 0 */
TCC_CALLBACK_FAULT0,
/** Callback for Non-Recoverable Fault 1 */
TCC_CALLBACK_FAULT1,
# if defined(__DOXYGEN__)
/** Channel callback type table for TCC
*
* Each TCC module may contain several callback types for channels; each
* channel will have its own callback type in the table, with the channel
* index number substituted for "n" in the channel callback type
* (e.g. \c TCC_MATCH_CAPTURE_CHANNEL_0).
*/
TCC_CALLBACK_CHANNEL_n = n,
# else
/** Callbacks for Match/Capture channels, e.g., TCC_CALLBACK_CHANNEL_0 */
_TCC_CHANNEL_ENUM_LIST(CALLBACK)
# endif
# if !defined(__DOXYGEN__)
/** Number of available callbacks */
TCC_CALLBACK_N
# endif
};
#endif /* #if TCC_ASYNC == true */
/**
* \name Module Status Flags
*
* TCC status flags, returned by \ref tcc_get_status() and cleared by
* \ref tcc_clear_status().
*
* @{
*/
/** Timer channel \c ch (0 ~ 3) has matched against its compare value,
* or has captured a new value.
*/
#define TCC_STATUS_CHANNEL_MATCH_CAPTURE(ch) (1UL << (ch))
/** Timer channel \c ch (0 ~ 3) match/compare output state. */
#define TCC_STATUS_CHANNEL_OUTPUT(ch) (1UL << ((ch)+8))
/** A Non-Recoverable Fault \c x (0 ~ 1) has occurred. */
#define TCC_STATUS_NON_RECOVERABLE_FAULT_OCCUR(x) (1UL << ((x)+16))
/** A Recoverable Fault \c n (0 ~ 1 representing A ~ B) has occured. */
#define TCC_STATUS_RECOVERABLE_FAULT_OCCUR(n) (1UL << ((n)+18))
/** The Non-Recoverable Fault \c x (0 ~ 1) input is present. */
#define TCC_STATUS_NON_RECOVERABLE_FAULT_PRESENT(x) (1UL << ((x)+20))
/** A Recoverable Fault \c n (0 ~ 1 representing A ~ B) is present. */
#define TCC_STATUS_RECOVERABLE_FAULT_PRESENT(n) (1UL << ((n)+22))
/** Timer registers synchronization has completed, and the synchronized count
* value may be read.
*/
#define TCC_STATUS_SYNC_READY (1UL << 23)
/** A new value was captured before the previous value was read, resulting in
* lost data.
*/
#define TCC_STATUS_CAPTURE_OVERFLOW (1UL << 24)
/** A counter event occurred. */
#define TCC_STATUS_COUNTER_EVENT (1UL << 25)
/** A counter retrigger occurred. */
#define TCC_STATUS_COUNTER_RETRIGGERED (1UL << 26)
/** The timer count value has overflowed from its maximum value to its minimum
* when counting upward, or from its minimum value to its maximum when
* counting downward.
*/
#define TCC_STATUS_COUNT_OVERFLOW (1UL << 27)
/** Ramp period cycle index.
* In ramp operation, each two period cycles are marked as cycle A and B,
* the index 0 represents cycle A and 1 represents cycle B. */
#define TCC_STATUS_RAMP_CYCLE_INDEX (1UL << 28)
/** The counter has been stopped (due to disable, stop command, or one-shot). */
#define TCC_STATUS_STOPPED (1UL << 29)
/** @} */
/**
* \brief Index of the match capture channels
*
* This enum is used to specify which capture/match channel to do
* operations on.
*/
enum tcc_match_capture_channel {
# if defined(__DOXYGEN__)
/** Match capture channel index table for TCC
*
* Each TCC module may contain several match capture channels; each channel
* will have its own index in the table, with the index number substituted
* for "n" in the index name (e.g. \c TCC_MATCH_CAPTURE_CHANNEL_0).
*/
TCC_MATCH_CAPTURE_CHANNEL_n = n,
# else
/** Indexes of match capture channels, e.g., TCC_MATCH_CAPTURE_CHANNEL_0 */
_TCC_CHANNEL_ENUM_LIST(MATCH_CAPTURE)
# endif
# if !defined(__DOXYGEN__)
/** Number of supported channels */
TCC_MATCH_CAPTURE_CHANNEL_N
# endif
};
/**
* \brief Index of the wave outputs
*
* This enum is used to specify which wave output to do
* operations on.
*/
enum tcc_wave_output {
# if defined(__DOXYGEN__)
/** Waveform output index table for TCC
*
* Each TCC module may contain several wave outputs; each output
* will have its own index in the table, with the index number substituted
* for "n" in the index name (e.g. \c TCC_WAVE_OUTPUT_0).
*/
TCC_WAVE_OUTPUT_n = n,
# else
/** Indexes of match capture channels, e.g., TCC_WAVEFORM_OUTPUT_0 */
_TCC_WO_ENUM_LIST(WAVE_OUTPUT)
# endif
# if !defined(__DOXYGEN__)
/** Number of supported channels */
TCC_WAVE_OUTPUT_N
# endif
};
/**
* \brief TCC wave generation mode enum
*
* This enum is used to specify the waveform generation mode.
*
*/
enum tcc_wave_generation {
/** Normal Frequency: Top is the PER register, output toggled on each
* compare match */
TCC_WAVE_GENERATION_NORMAL_FREQ = 0,
/** Match Frequency: Top is CC0 register, output toggles on each update
* condition */
TCC_WAVE_GENERATION_MATCH_FREQ = 1,
/** Single-Slope PWM: Top is the PER register, CCx controls duty cycle
* (output active when count is greater than CCx) */
TCC_WAVE_GENERATION_SINGLE_SLOPE_PWM = 2,
/** Double-slope (count up and down), non centre-aligned: Top is the PER
* register, CC[x] controls duty cycle while counting up and CC[x+N/2]
* controls it while counting down */
TCC_WAVE_GENERATION_DOUBLE_SLOPE_CRITICAL = 4,
/** Double-slope (count up and down), interrupt/event at Bottom (Top is the
* PER register, output active when count is greater than CCx) */
TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTTOM = 5,
/** Double-slope (count up and down), interrupt/event at Bottom and Top: (Top is the
* PER register, output active when count is lower than CCx) */
TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTH = 6,
/** Double-slope (count up and down), interrupt/event at Top (Top is the
* PER register, output active when count is greater than CCx) */
TCC_WAVE_GENERATION_DOUBLE_SLOPE_TOP = 7,
};
/**
* \brief Polarity of TCC wave generation on channels
*
* Specifies whether the wave output needs to be inverted or not.
*/
enum tcc_wave_polarity {
/** Wave output is not inverted */
TCC_WAVE_POLARITY_0,
/** Wave output is inverted */
TCC_WAVE_POLARITY_1
};
/**
* \brief TCC pattern generator for outputs
*
* Used when disabling output pattern or when selecting a specific pattern.
*/
enum tcc_output_pattern {
/** SWAP output pattern is not used */
TCC_OUTPUT_PATTERN_DISABLE,
/** Pattern 0 is applied to SWAP output */
TCC_OUTPUT_PATTERN_0,
/** Pattern 1 is applied to SWAP output */
TCC_OUTPUT_PATTERN_1
};
/**
* \brief Ramp Operations which are supported in single-slope PWM generation
*
* Ramp operations which are supported in single-slope PWM generation.
*/
enum tcc_ramp {
/** Default timer/counter PWM operation */
TCC_RAMP_RAMP1 = 0,
/** Uses a single channel (CC0) to control both CC0/CC1 compare outputs.
* In cycle A, the channel 0 output is disabled, and
* in cycle B, the channel 1 output is disabled. */
TCC_RAMP_RAMP2A,
/** Uses channels CC0 and CC1 to control compare outputs.
* In cycle A, the channel 0 output is disabled, and
* in cycle B, the channel 1 output is disabled.*/
TCC_RAMP_RAMP2
};
/**
* \brief Ramp Index for TCC wave generation
*
* In ramp operation, each two period cycles are marked as cycle A and B,
* the index 0 represents cycle A and 1 represents cycle B.
*/
enum tcc_ramp_index {
/** Default, cycle index toggles. */
TCC_RAMP_INDEX_DEFAULT,
/** Force next cycle to be cycle B (set to 1) */
TCC_RAMP_INDEX_FORCE_B,
/** Force next cycle to be cycle A (clear to 0) */
TCC_RAMP_INDEX_FORCE_A,
/** Force next cycle keeping the same as current */
TCC_RAMP_INDEX_FORCE_KEEP
};
/**
* \brief TCC output inversion
*
* Used when enabling or disabling output inversion.
*/
enum tcc_output_invertion {
/** Output inversion not to be enabled */
TCC_OUTPUT_INVERTION_DISABLE,
/** Invert the output from WO[x] */
TCC_OUTPUT_INVERTION_ENABLE
};
/**
* \brief TCC Counter reload action enum
*
* This enum specify how the counter is reloaded and whether the prescaler
* should be restarted.
*/
enum tcc_reload_action {
/** The counter is reloaded/reset on the next GCLK and starts
* counting on the prescaler clock
*/
TCC_RELOAD_ACTION_GCLK,
/** The counter is reloaded/reset on the next prescaler clock
*/
TCC_RELOAD_ACTION_PRESC,
/** The counter is reloaded/reset on the next GCLK, and the
* prescaler is restarted as well
*/
TCC_RELOAD_ACTION_RESYNC
};
/**
* \brief TCC clock prescaler values
*
* This enum is used to choose the clock prescaler
* configuration. The prescaler divides the clock frequency of the TCC
* module to operate TCC at a slower clock rate.
*/
enum tcc_clock_prescaler {
/** Divide clock by 1 */
TCC_CLOCK_PRESCALER_DIV1,
/** Divide clock by 2 */
TCC_CLOCK_PRESCALER_DIV2,
/** Divide clock by 4 */
TCC_CLOCK_PRESCALER_DIV4,
/** Divide clock by 8 */
TCC_CLOCK_PRESCALER_DIV8,
/** Divide clock by 16 */
TCC_CLOCK_PRESCALER_DIV16,
/** Divide clock by 64 */
TCC_CLOCK_PRESCALER_DIV64,
/** Divide clock by 256 */
TCC_CLOCK_PRESCALER_DIV256,
/** Divide clock by 1024 */
TCC_CLOCK_PRESCALER_DIV1024
};
/**
* \brief TCC module count direction
*
* Used when selecting the Timer/Counter count direction.
*/
enum tcc_count_direction {
/** Timer should count upward */
TCC_COUNT_DIRECTION_UP,
/** Timer should count downward */
TCC_COUNT_DIRECTION_DOWN,
};
#ifdef FEATURE_TCC_GENERATE_DMA_TRIGGER
/**
* \brief TCC module counter overflow DMA request mode
*
* Used when selecting the Timer/Counter overflow DMA request mode.
*/
enum tcc_count_overflow_dma_trigger_mode {
/** TCC generates a DMA request on each cycle when an update condition
* is detected
*/
TCC_COUNT_OVERFLOW_DMA_TRIGGER_MODE_CONTINUE,
/** When an update condition is detected, the TCC generates a DMA trigger
* on the cycle following the DMA One-Shot Command written to the Control
* B register
*/
TCC_COUNT_OVERFLOW_DMA_TRIGGER_MODE_ONE_SHOT,
};
#endif
/**
* \brief Action to perform when the TCC module is triggered by events
*
* Event action to perform when the module is triggered by events.
*/
enum tcc_event_action {
/** No event action */
TCC_EVENT_ACTION_OFF,
/** Stop counting, the counter will maintain its current value, waveforms
* are set to a defined Non-Recoverable State output
* (\ref tcc_non_recoverable_state_output). */
TCC_EVENT_ACTION_STOP,
/** Re-trigger counter on event, may generate an event if the re-trigger
* event output is enabled.
* \note When re-trigger event action is enabled, enabling the counter
* will not start until the next incoming event appears. */
TCC_EVENT_ACTION_RETRIGGER,
/** Start counter when previously stopped.
* Start counting on the event rising edge. Further events will not
* restart the counter;
* the counter keeps on counting using prescaled GCLK_TCCx, until it
* reaches TOP or Zero
* depending on the direction. */
TCC_EVENT_ACTION_START,
/** Count events; i.e. Increment or decrement depending on count
* direction. */
TCC_EVENT_ACTION_COUNT_EVENT,
/** The event source must be an asynchronous event, input value will
* overrides the direction settings (input low: counting up, input high:
* counting down). */
TCC_EVENT_ACTION_DIR_CONTROL,
/** Increment the counter on event, irrespective of count direction */
TCC_EVENT_ACTION_INCREMENT,
/** Decrement the counter on event, irrespective of count direction */
TCC_EVENT_ACTION_DECREMENT,
/** Count during active state of asynchronous event. In this case,
* depending on the count direction, the count will be incremented
* or decremented on each prescaled GCLK_TCCx, as long as the input
* event remains active. */
TCC_EVENT_ACTION_COUNT_DURING_ACTIVE,
/** Store period in capture register 0, pulse width in capture
* register 1
*/
TCC_EVENT_ACTION_PERIOD_PULSE_WIDTH_CAPTURE,
/** Store pulse width in capture register 0, period in capture
* register 1
*/
TCC_EVENT_ACTION_PULSE_WIDTH_PERIOD_CAPTURE,
/** Generate Non-Recoverable Fault on event */
TCC_EVENT_ACTION_NON_RECOVERABLE_FAULT,
};
/**
* \brief Action to be performed when the TCC module is triggered by event0
*
* Event action to perform when the module is triggered by event0.
*/
enum tcc_event0_action {
/** No event action */
TCC_EVENT0_ACTION_OFF = TCC_EVENT_ACTION_OFF,
/** Re-trigger Counter on event */
TCC_EVENT0_ACTION_RETRIGGER = TCC_EVENT_ACTION_RETRIGGER,
/** Count events (increment or decrement, depending on count direction)
*/
TCC_EVENT0_ACTION_COUNT_EVENT = TCC_EVENT_ACTION_COUNT_EVENT,
/** Start counter on event */
TCC_EVENT0_ACTION_START = TCC_EVENT_ACTION_START,
/** Increment counter on event */
TCC_EVENT0_ACTION_INCREMENT = TCC_EVENT_ACTION_INCREMENT,
/** Count during active state of asynchronous event */
TCC_EVENT0_ACTION_COUNT_DURING_ACTIVE = TCC_EVENT_ACTION_COUNT_DURING_ACTIVE,
/** Generate Non-Recoverable Fault on event */
TCC_EVENT0_ACTION_NON_RECOVERABLE_FAULT = TCC_EVENT_ACTION_NON_RECOVERABLE_FAULT
};
/**
* \brief Action to perform when the TCC module is triggered by event1
*
* Event action to perform when the module is triggered by event1.
*/
enum tcc_event1_action {
/** No event action */
TCC_EVENT1_ACTION_OFF = TCC_EVENT_ACTION_OFF,
/** Re-trigger Counter on event */
TCC_EVENT1_ACTION_RETRIGGER = TCC_EVENT_ACTION_RETRIGGER,
/** The event source must be an asynchronous event, and the input value
* will override the direction settings.
* If TCEINVx is 0 and input event is LOW: counter will count up.
* If TCEINVx is 0 and input event is HIGH: counter will count down.
*/
TCC_EVENT1_ACTION_DIR_CONTROL = TCC_EVENT_ACTION_DIR_CONTROL,
/** Stop counter on event */
TCC_EVENT1_ACTION_STOP = TCC_EVENT_ACTION_STOP,
/** Decrement on event */
TCC_EVENT1_ACTION_DECREMENT = TCC_EVENT_ACTION_DECREMENT,
/** Store period in capture register 0, pulse width in capture
* register 1
*/
TCC_EVENT1_ACTION_PERIOD_PULSE_WIDTH_CAPTURE = TCC_EVENT_ACTION_PERIOD_PULSE_WIDTH_CAPTURE,
/** Store pulse width in capture register 0, period in capture
* register 1
*/
TCC_EVENT1_ACTION_PULSE_WIDTH_PERIOD_CAPTURE = TCC_EVENT_ACTION_PULSE_WIDTH_PERIOD_CAPTURE,
/** Generate Non-Recoverable Fault on event */
TCC_EVENT1_ACTION_NON_RECOVERABLE_FAULT = TCC_EVENT_ACTION_NON_RECOVERABLE_FAULT
};
/**
* \brief On which part of the counter cycle the counter event output is generated
*
* This enum is used to define the point at which the counter event is generated.
*/
enum tcc_event_generation_selection {
/** Counter Event is generated when a new counter cycle starts */
TCC_EVENT_GENERATION_SELECTION_START,
/** Counter Event is generated when a counter cycle ends */
TCC_EVENT_GENERATION_SELECTION_END,
/** Counter Event is generated when a counter cycle ends, except for the
* first and last cycles */
TCC_EVENT_GENERATION_SELECTION_BETWEEN,
/** Counter Event is generated when a new counter cycle starts or ends */
TCC_EVENT_GENERATION_SELECTION_BOUNDARY
};
/**
* \brief TCC channel operation modes
*
* To set a timer channel either in compare or in capture mode.
*/
enum tcc_channel_function {
/** TCC channel performs compare operation */
TCC_CHANNEL_FUNCTION_COMPARE,
/** TCC channel performs capture operation */
TCC_CHANNEL_FUNCTION_CAPTURE
};
/**
* \brief TCC (recoverable) fault Halt action
*/
enum tcc_fault_halt_action {
/** Halt action disabled. */
TCC_FAULT_HALT_ACTION_DISABLE,
/** Hardware halt action, counter is halted until restart */
TCC_FAULT_HALT_ACTION_HW_HALT,
/** Software halt action, counter is halted until fault bit cleared */
TCC_FAULT_HALT_ACTION_SW_HALT,
/** Non-Recoverable fault, force output to pre-defined level */
TCC_FAULT_HALT_ACTION_NON_RECOVERABLE
};
/**
* \brief TCC (recoverable) fault Capture action
*/
enum tcc_fault_capture_action {
/** Capture disabled */
TCC_FAULT_CAPTURE_DISABLE,
/** Capture on Fault, each value is captured */
TCC_FAULT_CAPTURE_EACH,
/** Capture the minimum detection, but notify on smaller ones */
TCC_FAULT_CAPTURE_MINIMUM,
/** Capture the maximum detection, but notify on bigger ones */
TCC_FAULT_CAPTURE_MAXIMUM,
/** Capture if the value is smaller than last, notify event or interrupt
* if previous stamp is confirmed to be "local minimum" (not bigger than
* current stamp). */
TCC_FAULT_CAPTURE_SMALLER,
/** Capture if the value is bigger than last, notify event or interrupt
* if previous stamp is confirmed to be "local maximum" (not smaller than
* current stamp). */
TCC_FAULT_CAPTURE_BIGGER,
/** Capture if the time stamps changes its increment direction */
TCC_FAULT_CAPTURE_CHANGE
};
/**
* \brief Capture Channel triggered by TCC (recoverable) fault
*/
enum tcc_fault_capture_channel {
/** Recoverable fault triggers channel 0 capture operation */
TCC_FAULT_CAPTURE_CHANNEL_0,
/** Recoverable fault triggers channel 1 capture operation */
TCC_FAULT_CAPTURE_CHANNEL_1,
/** Recoverable fault triggers channel 2 capture operation */
TCC_FAULT_CAPTURE_CHANNEL_2,
/** Recoverable fault triggers channel 3 capture operation */
TCC_FAULT_CAPTURE_CHANNEL_3
};
/**
* \brief TCC (recoverable) fault Input Source
*/
enum tcc_fault_source {
/** Fault input is disabled */
TCC_FAULT_SOURCE_DISABLE,
/** Match Capture Event x (x=0,1) input */
TCC_FAULT_SOURCE_ENABLE,
/** Inverted MCEx (x=0,1) event input */
TCC_FAULT_SOURCE_INVERT,
/** Alternate fault (A or B) state at the end of the previous period */
TCC_FAULT_SOURCE_ALTFAULT
};
/**
* \brief TCC (recoverable) fault Input Blanking Start Point
*/
enum tcc_fault_blanking {
/** No blanking */
TCC_FAULT_BLANKING_DISABLE,
/** Blanking applied from rising edge of the output waveform */
TCC_FAULT_BLANKING_RISING_EDGE,
/** Blanking applied from falling edge of the output waveform */
TCC_FAULT_BLANKING_FALLING_EDGE,
/** Blanking applied from each toggle of the output waveform */
TCC_FAULT_BLANKING_BOTH_EDGE
};
/**
* \brief TCC (recoverable) fault Input Qualification Action
*/
enum tcc_fault_qualification {
/** The input is not disabled on compare condition */
TCC_FAULT_QUALIFICATION_DISABLE,
/** The input is disabled when match output signal is at inactive level */
TCC_FAULT_QUALIFICATION_BY_OUTPUT
};
/**
* \brief TCC (recoverable) fault Output Keep Action
*/
enum tcc_fault_keep {
/** Disable keeping, wave output released as soon as fault is released */
TCC_FAULT_KEEP_DISABLE,
/** Keep wave output until end of TCC cycle */
TCC_FAULT_KEEP_TILL_END
};
/**
* \brief TCC Non-recoverable State Outupt
*/
enum tcc_fault_state_output {
/** Non-recoverable fault output is tri-stated */
TCC_FAULT_STATE_OUTPUT_OFF,
/** Non-recoverable fault force output 0 */
TCC_FAULT_STATE_OUTPUT_0,
/** Non-recoverable fault force output 1 */
TCC_FAULT_STATE_OUTPUT_1
};
/**
* \brief TCC (recoverable) fault Restart Action
*/
enum tcc_fault_restart {
/** Restart Action disabled */
TCC_FAULT_RESTART_DISABLE,
/** Restart Action enabled */
TCC_FAULT_RESTART_ENABLE
};
/**
* \brief Configuration struct for TCC module recoverable fault
*/
struct tcc_recoverable_fault_config {
/** Fault filter value applied on MCEx event input line (0x0 ~ 0xF).
* Must be 0 when MCEx event is used as synchronous event.
* Apply to both recoverable and non-recoverable fault. */
uint8_t filter_value;
/** Fault blanking value (0 ~ 255), disable input source for several TCC
* clocks after the detection of the waveform edge */
uint8_t blanking_cycles;
/** Set to \c true to enable restart action */
bool restart;
/** Set to \c true to enable keep action (keep until end of TCC cycle) */
bool keep;
/** Set to \c true to enable input qualification
* (disable input when output is inactive) */
bool qualification;
/** Specifies if the event input generates recoverable Fault.
* The event system channel connected to MCEx event input must be
* configured as asynchronous.
*/
enum tcc_fault_source source;
/** Fault Blanking Start Point for recoverable Fault */
enum tcc_fault_blanking blanking;
/** Halt action for recoverable Fault */
enum tcc_fault_halt_action halt_action;
/** Capture action for recoverable Fault */
enum tcc_fault_capture_action capture_action;
/** Channel triggered by recoverable Fault */
enum tcc_fault_capture_channel capture_channel;
};
/**
* \brief Configuration struct for TCC module non-recoverable fault
*/
struct tcc_non_recoverable_fault_config {
/** Fault filter value applied on TCEx event input line (0x0 ~ 0xF).
* Must be 0 when TCEx event is used as synchronous event. */
uint8_t filter_value;
/** Output */
enum tcc_fault_state_output output;
};
/**
* \brief TCC input event enable/disable/configure structure
*
* For configuring an input event.
*/
struct tcc_input_event_config {
/** Event action on incoming event */
enum tcc_event_action action;
/** Modify event action */
bool modify_action;
/** Invert incoming event input line */
bool invert;
};
/**
* \brief TCC output event enable/disable/configure structure
*
* Structure used for configuring an output event.
*/
struct tcc_output_event_config {
/** It decides which part of the counter cycle the counter event output
* is generated */
enum tcc_event_generation_selection generation_selection;
/** A switch to allow enable/disable of events, without modifying the
* event output configuration
*/
bool modify_generation_selection;
};
/**
* \brief TCC event enable/disable structure
*
* Event flags for the \ref tcc_enable_events() and \ref tcc_disable_events().
*/
struct tcc_events {
/** Input events configuration */
struct tcc_input_event_config input_config[2];
/** Output event configuration */
struct tcc_output_event_config output_config;
/** Perform the configured event action when an incoming event is
* signalled */
bool on_input_event_perform_action[2];
/** Perform the configured event action when an incoming channel event is
* signalled */
bool on_event_perform_channel_action[TCC_NUM_CHANNELS];
/** Generate an output event on a channel capture/match.
* Specify which channels will generate events */
bool generate_event_on_channel[TCC_NUM_CHANNELS];
/** Generate an output event on counter overflow/underflow */
bool generate_event_on_counter_overflow;
/** Generate an output event on counter retrigger */
bool generate_event_on_counter_retrigger;
/** Generate an output event on counter boundary.
* See \ref tcc_event_output_action. */
bool generate_event_on_counter_event;
};
/**
* \brief Configuration struct for the TCC module base counter
*
* Structure for configuring a TCC as a counter.
*/
struct tcc_counter_config {
/** Value to initialize the count register */
uint32_t count;
/** Period/top and period/top buffer values for counter */
uint32_t period;
/** When \c true, the counter will be stopped on the next hardware or
* software re-trigger event or overflow/underflow
*/
bool oneshot;
#ifdef FEATURE_TCC_GENERATE_DMA_TRIGGER
/** Counter overflow trigger a DMA request mode */
enum tcc_count_overflow_dma_trigger_mode dma_trigger_mode;
#endif
/** Specifies the direction for the TCC to count */
enum tcc_count_direction direction;
/** GCLK generator used to clock the peripheral */
enum gclk_generator clock_source;
/** Specifies the prescaler value for GCLK_TCC */
enum tcc_clock_prescaler clock_prescaler;
/** Specifies the reload or reset time of the counter and prescaler
* resynchronization on a re-trigger event for the TCC
*/
enum tcc_reload_action reload_action;
};
/**
* \brief Configuration struct for the TCC module capture
*
* Structure used when configuring TCC channels in capture mode.
*/
struct tcc_capture_config {
/** Channel functions selection (capture/match) */
enum tcc_channel_function channel_function[TCC_NUM_CHANNELS];
};
/**
* \brief Configuration struct for the TCC module match/wave generation
*
* The structure, which helps to configure a TCC channel for compare
* operation and wave generation.
*/
struct tcc_match_wave_config {
/** Channel functions selection (capture/match) */
enum tcc_channel_function channel_function[TCC_NUM_CHANNELS];
/** Specifies polarity for match output waveform generation */
enum tcc_wave_polarity wave_polarity[TCC_NUM_CHANNELS];
/** Specifies which waveform generation mode to use */
enum tcc_wave_generation wave_generation;
/** Specifies Ramp mode for waveform generation */
enum tcc_ramp wave_ramp;
/** Value to be used for compare match on each channel */
uint32_t match[TCC_NUM_CHANNELS];
};
/**
* \brief Configuration struct for the TCC module waveform extension
*
* This structure is used to specify the waveform extension features for TCC.
*/
struct tcc_wave_extension_config {
/** Configuration for recoverable faults */
struct tcc_recoverable_fault_config
recoverable_fault[TCC_NUM_FAULTS];
/** Configuration for non-recoverable faults */
struct tcc_non_recoverable_fault_config
non_recoverable_fault[TCC_NUM_WAVE_OUTPUTS];
/** Invert waveform final outputs lines */
bool invert[TCC_NUM_WAVE_OUTPUTS];
};
/**
* \brief Configuration struct for the TCC module output pins
*
* Structure which is used when taking wave output from TCC.
*/
struct tcc_pins_config {
/** Specifies pin output for each channel */
uint32_t wave_out_pin[TCC_NUM_WAVE_OUTPUTS];
/** Specifies MUX setting for each output channel pin */
uint32_t wave_out_pin_mux[TCC_NUM_WAVE_OUTPUTS];
/** When \c true, PWM output pin for the given channel is enabled */
bool enable_wave_out_pin[TCC_NUM_WAVE_OUTPUTS];
};
/**
* \brief TCC configuration structure
*
* Configuration struct for a TCC instance. This structure should be
* initialized by the \ref tcc_get_config_defaults function before being
* modified by the user application.
*/
struct tcc_config {
/** Structure for configuring TCC base timer/counter */
struct tcc_counter_config counter;
/** TCC match/capture configurations */
union {
/** Helps to configure a TCC channel in capture mode */
struct tcc_capture_config capture;
/** For configuring a TCC channel in compare mode */
struct tcc_match_wave_config compare;
/** Serves the same purpose as compare. Used as an alias for
* compare,
* when a TCC channel is configured for wave generation */
struct tcc_match_wave_config wave;
};
/** Structure for configuring TCC waveform extension */
struct tcc_wave_extension_config wave_ext;
/** Structure for configuring TCC output pins */
struct tcc_pins_config pins;
/** Set to \c true to enable double buffering write. When enabled any write
* through \ref tcc_set_top_value(), \ref tcc_set_compare_value() and
* \ref tcc_set_pattern() will direct to the buffer register as buffered
* value, and the buffered value will be committed to effective register
* on UPDATE condition, if update is not locked.
*
* \note The init values in \ref tcc_config for \ref tcc_init are always
* filled to effective registers, no matter if double buffering is
* enabled or not.
*/
bool double_buffering_enabled;
/** When \c true the module is enabled during standby */
bool run_in_standby;
};
#if TCC_ASYNC == true
/* Forward Declaration for the device instance. */
struct tcc_module;
/** Type definition for the TCC callback function. */
typedef void (*tcc_callback_t)(struct tcc_module *const module);
#endif
/**
* \brief TCC software device instance structure
*
* TCC software instance structure, used to retain software state information
* of an associated hardware module instance.
*
* \note The fields of this structure should not be altered by the user
* application; they are reserved only for module-internal use.
*/
struct tcc_module {
/** Hardware module pointer of the associated Timer/Counter peripheral. */
Tcc *hw;
# if TCC_ASYNC == true
/** Array of callbacks */
tcc_callback_t callback[TCC_CALLBACK_N];
/** Bit mask for callbacks registered */
uint32_t register_callback_mask;
/** Bit mask for callbacks enabled */
uint32_t enable_callback_mask;
# endif
/** Set to \c true to write to buffered registers */
bool double_buffering_enabled;
};
#if !defined(__DOXYGEN__)
uint8_t _tcc_get_inst_index(
Tcc *const hw);
#endif
/**
* \name Driver Initialization and Configuration
* @{
*/
/**
* \brief Determines if the hardware module is currently synchronizing to the bus
*
* Checks to see if the underlying hardware peripheral module is currently
* synchronizing across multiple clock domains to the hardware bus. This
* function can be used to delay further operations on a module until such time
* that it is ready, to prevent blocking delays for synchronization in the
* user application.
*
* \param[in] module_inst Pointer to the software module instance struct
*
* \return Synchronization status of the underlying hardware module.
*
* \retval false If the module has completed synchronization
* \retval true If the module synchronization is ongoing
*/
static inline bool tcc_is_syncing(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
return (module_inst->hw->SYNCBUSY.reg > 0);
}
void tcc_get_config_defaults(
struct tcc_config *const config,
Tcc *const hw);
enum status_code tcc_init(
struct tcc_module *const module_inst,
Tcc *const hw,
const struct tcc_config *const config);
/** @} */
/**
* \name Event Management
* @{
*/
enum status_code tcc_enable_events(
struct tcc_module *const module_inst,
struct tcc_events *const events);
void tcc_disable_events(
struct tcc_module *const module_inst,
struct tcc_events *const events);
/** @} */
/**
* \name Enable/Disable/Reset
* @{
*/
/**
* \brief Enable the TCC module
*
* Enables a TCC module that has been previously initialized. The counter will
* start when the counter is enabled.
*
* \note When the counter is configured to re-trigger on an event, the counter
* will not start until the next incoming event appears. Then it
* restarts on any following event.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tcc_enable(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_ENABLE) {
/* Wait for sync */
}
/* Enable the TCC module */
tcc_module->CTRLA.reg |= TCC_CTRLA_ENABLE;
}
/**
* \brief Disables the TCC module
*
* Disables a TCC module and stops the counter.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tcc_disable(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_ENABLE) {
/* Wait for sync */
}
/* Disbale interrupt */
tcc_module->INTENCLR.reg = TCC_INTENCLR_MASK;
/* Clear interrupt flag */
tcc_module->INTFLAG.reg = TCC_INTFLAG_MASK;
/* Disable the TCC module */
tcc_module->CTRLA.reg &= ~TC_CTRLA_ENABLE;
}
/**
* \brief Resets the TCC module
*
* Resets the TCC module, restoring all hardware module registers to their
* default values and disabling the module. The TCC module will not be
* accessible while the reset is being performed.
*
* \note When resetting a 32-bit counter only the master TCC module's instance
* structure should be passed to the function.
*
* \param[in] module_inst Pointer to the software module instance struct
*
*/
static inline void tcc_reset(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module hardware instance */
Tcc *const tcc_module = module_inst->hw;
/* Disable this module if it is running */
if (tcc_module->CTRLA.reg & TCC_CTRLA_ENABLE) {
tcc_disable(module_inst);
while (tcc_is_syncing(module_inst)) {
/* wait while module is disabling */
}
}
/* Reset this TC module */
tcc_module->CTRLA.reg |= TCC_CTRLA_SWRST;
}
/** @} */
/**
* \name Set/Toggle Count Direction
* @{
*/
/**
* \brief Sets the TCC module count direction
*
* Sets the count direction of an initialized TCC module. The
* specified TCC module can remain running or stopped.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] dir New timer count direction to set
*/
static inline void tcc_set_count_direction(
const struct tcc_module *const module_inst,
enum tcc_count_direction dir)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
/* Set count direction */
if (TCC_COUNT_DIRECTION_DOWN == dir) {
tcc_module->CTRLBSET.reg = TCC_CTRLBSET_DIR;
return;
}
tcc_module->CTRLBCLR.reg = TCC_CTRLBCLR_DIR;
}
/**
* \brief Toggles the TCC module count direction
*
* Toggles the count direction of an initialized TCC module. The
* specified TCC module can remain running or stopped.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tcc_toggle_count_direction(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
bool dir_value_1 = tcc_module->CTRLBSET.bit.DIR;
if (dir_value_1) {
tcc_module->CTRLBCLR.reg = TCC_CTRLBCLR_DIR;
} else {
tcc_module->CTRLBSET.reg = TCC_CTRLBSET_DIR;
}
}
/** @} */
/**
* \name Get/Set Count Value
* @{
*/
uint32_t tcc_get_count_value(
const struct tcc_module *const module_inst);
enum status_code tcc_set_count_value(
const struct tcc_module *const module_inst,
const uint32_t count);
/** @} */
/**
* \name Stop/Restart Counter
* @{
*/
/**
* \brief Stops the counter
*
* This function will stop the counter. When the counter is stopped
* the value in the count register is set to 0 if the counter was
* counting up, or maximum or the top value if the counter was counting
* down.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tcc_stop_counter(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
uint32_t last_cmd;
/* Wait until last command is done */
do {
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
last_cmd = tcc_module->CTRLBSET.reg & TCC_CTRLBSET_CMD_Msk;
if (last_cmd == TCC_CTRLBSET_CMD_NONE) {
break;
} else if (last_cmd == TCC_CTRLBSET_CMD_STOP) {
/* Command have been issued */
return;
} else if (last_cmd == TCC_CTRLBSET_CMD_RETRIGGER) {
/* Cancel RETRIGGER command and issue STOP */
tcc_module->CTRLBCLR.reg = TCC_CTRLBCLR_CMD_Msk;
}
} while (1);
/* Write command to execute */
tcc_module->CTRLBSET.reg = TCC_CTRLBSET_CMD_STOP;
}
/**
* \brief Starts the counter from beginning
*
* Restarts an initialized TCC module's counter.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tcc_restart_counter(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
uint32_t last_cmd;
/* Wait until last command is done */
do {
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
last_cmd = tcc_module->CTRLBSET.reg & TCC_CTRLBSET_CMD_Msk;
if (last_cmd == TCC_CTRLBSET_CMD_NONE) {
break;
} else if (last_cmd == TCC_CTRLBSET_CMD_RETRIGGER) {
/* Command have been issued */
return;
} else if (last_cmd == TCC_CTRLBSET_CMD_STOP) {
/* Cancel STOP command and issue RETRIGGER */
tcc_module->CTRLBCLR.reg = TCC_CTRLBCLR_CMD_Msk;
}
} while (1);
/* Write command to execute */
tcc_module->CTRLBSET.reg = TCC_CTRLBSET_CMD_RETRIGGER;
}
/** @} */
#ifdef FEATURE_TCC_GENERATE_DMA_TRIGGER
/**
* \name Generate TCC DMA Triggers Command
* @{
*/
/**
* \brief TCC DMA Trigger.
*
* TCC DMA trigger command.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tcc_dma_trigger_command(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
/* Make certain that there are no conflicting commands in the register */
tcc_module->CTRLBCLR.reg = TCC_CTRLBCLR_CMD_NONE;
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
#if !(SAML21 || SAML22 || SAMR30)
/* Write command to execute */
tcc_module->CTRLBSET.reg = TCC_CTRLBSET_CMD_DMATRG;
#endif
#if (SAML21XXXB) || (SAML22) || (SAMR30)
/* Write command to execute */
tcc_module->CTRLBSET.reg = TCC_CTRLBSET_CMD_DMAOS;
#endif
}
/** @} */
#endif
/**
* \name Get/Set Compare/Capture Register
* @{
*/
uint32_t tcc_get_capture_value(
const struct tcc_module *const module_inst,
const enum tcc_match_capture_channel channel_index);
enum status_code tcc_set_compare_value(
const struct tcc_module *const module_inst,
const enum tcc_match_capture_channel channel_index,
const uint32_t compare);
/** @} */
/**
* \name Set Top Value
* @{
*/
enum status_code tcc_set_top_value(
const struct tcc_module *const module_inst,
const uint32_t top_value);
/** @} */
/**
* \name Set Output Pattern
* @{
*/
enum status_code tcc_set_pattern(
const struct tcc_module *const module_inst,
const uint32_t line_index,
const enum tcc_output_pattern pattern);
/** @} */
/**
* \name Set Ramp Index
* @{
*/
/**
* \brief Sets the TCC module ramp index on next cycle
*
* In RAMP2 and RAMP2A operation, we can force either cycle A or cycle B at
* the output, on the next clock cycle.
* When ramp index command is disabled, cycle A and cycle B will appear at
* the output, on alternate clock cycles.
* See \ref tcc_ramp.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] ramp_index Ramp index (\ref tcc_ramp_index) of the next cycle
*/
static inline void tcc_set_ramp_index(
const struct tcc_module *const module_inst,
const enum tcc_ramp_index ramp_index)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
uint32_t last_cmd;
/* Wait until last command is done */
do {
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
if (TCC_RAMP_INDEX_DEFAULT == ramp_index) {
/* Cancel pending command */
tcc_module->CTRLBCLR.reg = TCC_CTRLBSET_IDXCMD_HOLD;
return;
}
last_cmd = tcc_module->CTRLBSET.reg & TCC_CTRLBSET_IDXCMD_Msk;
if (last_cmd == TCC_CTRLBSET_IDXCMD_DISABLE) {
break;
} else if (last_cmd == TCC_CTRLBSET_IDXCMD(ramp_index)) {
/* Command have been issued */
return;
}
} while (1);
/* Write command to execute */
tcc_module->CTRLBSET.reg = TCC_CTRLBSET_IDXCMD(ramp_index);
}
/** @} */
/**
* \name Status Management
* @{
*/
/**
* \brief Checks if the timer/counter is running
*
* \param[in] module_inst Pointer to the TCC software instance struct
*
* \return Status which indicates whether the module is running.
*
* \retval true The timer/counter is running
* \retval false The timer/counter is stopped
*/
static inline bool tcc_is_running(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
return !module_inst->hw->STATUS.bit.STOP;
}
uint32_t tcc_get_status(
struct tcc_module *const module_inst);
void tcc_clear_status(
struct tcc_module *const module_inst,
const uint32_t status_flags);
/** @} */
/**
* \name Double Buffering Management
* @{
*/
/**
* \brief Enable TCC double buffering write
*
* When double buffering write is enabled, the following function will write
* values to buffered registers instead of effective ones (buffered):
* - PERB: through \ref tcc_set_top_value()
* - CCBx(x is 0~3): through \ref tcc_set_compare_value()
* - PATTB: through \ref tcc_set_pattern()
*
* Then, on UPDATE condition the buffered registers are committed to regular ones
* to take effect.
*
* \param[in] module_inst Pointer to the TCC software instance struct
*/
static inline void tcc_enable_double_buffering(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
module_inst->double_buffering_enabled = true;
}
/**
* \brief Disable TCC double buffering Write
*
* When double buffering write is disabled, following function will write values
* to effective registers (not buffered):
* - PER: through \ref tcc_set_top_value()
* - CCx(x is 0~3): through \ref tcc_set_compare_value()
* - PATT: through \ref tcc_set_pattern()
*
* \note This function does not lock double buffer update, which means on next
* UPDATE condition the last written buffered values will be committed to
* take effect. Invoke \ref tcc_lock_double_buffer_update() before this
* function to disable double buffering update, if this change is not
* expected.
*
* \param[in] module_inst Pointer to the TCC software instance struct
*/
static inline void tcc_disable_double_buffering(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
module_inst->double_buffering_enabled = false;
}
/**
* \brief Lock the TCC double buffered registers updates
*
* Locks the double buffered registers so they will not be updated through
* their buffered values on UPDATE conditions.
*
* \param[in] module_inst Pointer to the TCC software instance struct
*
*/
static inline void tcc_lock_double_buffer_update(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
while (module_inst->hw->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
module_inst->hw->CTRLBSET.reg = TCC_CTRLBSET_LUPD;
}
/**
* \brief Unlock the TCC double buffered registers updates
*
* Unlock the double buffered registers so they will be updated through
* their buffered values on UPDATE conditions.
*
* \param[in] module_inst Pointer to the TCC software instance struct
*
*/
static inline void tcc_unlock_double_buffer_update(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
while (module_inst->hw->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
module_inst->hw->CTRLBCLR.reg = TCC_CTRLBCLR_LUPD;
}
/**
* \brief Force the TCC double buffered registers to update once
*
* \param[in] module_inst Pointer to the TCC software instance struct
*
*/
static inline void tcc_force_double_buffer_update(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
uint32_t last_cmd;
/* Wait until last command is done */
do {
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
last_cmd = tcc_module->CTRLBSET.reg & TCC_CTRLBSET_CMD_Msk;
if (last_cmd == TCC_CTRLBSET_CMD_NONE) {
break;
} else if (last_cmd == TCC_CTRLBSET_CMD_UPDATE) {
/* Command have been issued */
return;
}
} while (1);
/* Write command to execute */
tcc_module->CTRLBSET.reg = TCC_CTRLBSET_CMD_UPDATE;
}
/**
* \brief Enable Circular option for double buffered Top/Period Values
*
* Enable circular option for the double buffered top/period values.
* On each UPDATE condition, the contents of PERB and PER are switched, meaning
* that the contents of PERB are transferred to PER and the contents of PER are
* transferred to PERB.
*
* \param[in] module_inst Pointer to the TCC software instance struct
*/
static inline void tcc_enable_circular_buffer_top(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
module_inst->hw->WAVE.reg |= TCC_WAVE_CIPEREN;
}
/**
* \brief Disable Circular option for double buffered Top/Period Values
*
* Stop circularing the double buffered top/period values.
*
* \param[in] module_inst Pointer to the TCC software instance struct
*/
static inline void tcc_disable_circular_buffer_top(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
module_inst->hw->WAVE.reg &= ~TCC_WAVE_CIPEREN;
}
enum status_code tcc_set_double_buffer_top_values(
const struct tcc_module *const module_inst,
const uint32_t top_value, const uint32_t top_buffer_value);
enum status_code tcc_enable_circular_buffer_compare(
struct tcc_module *const module_inst,
enum tcc_match_capture_channel channel_index);
enum status_code tcc_disable_circular_buffer_compare(
struct tcc_module *const module_inst,
enum tcc_match_capture_channel channel_index);
enum status_code tcc_set_double_buffer_compare_values(
struct tcc_module *const module_inst,
enum tcc_match_capture_channel channel_index,
const uint32_t compare,
const uint32_t compare_buffer);
/** @} */
/** @} */
#ifdef __cplusplus
}
#endif
/**
* \page asfdoc_sam0_tcc_extra Extra Information for TCC Driver
*
* \section asfdoc_sam0_tcc_extra_acronyms Acronyms
* The table below presents the acronyms used in this module:
*
* <table>
* <tr>
* <th>Acronym</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>DMA</td>
* <td>Direct Memory Access</td>
* </tr>
* <tr>
* <td>TCC</td>
* <td>Timer Counter for Control Applications</td>
* </tr>
* <tr>
* <td>PWM</td>
* <td>Pulse Width Modulation</td>
* </tr>
* <tr>
* <td>PWP</td>
* <td>Pulse Width Period</td>
* </tr>
* <tr>
* <td>PPW</td>
* <td>Period Pulse Width</td>
* </tr>
* </table>
*
*
* \section asfdoc_sam0_tcc_extra_dependencies Dependencies
* This driver has the following dependencies:
*
* - \ref asfdoc_sam0_system_pinmux_group "System Pin Multiplexer Driver"
*
*
* \section asfdoc_sam0_tcc_extra_errata Errata
* There are no errata related to this driver.
*
*
* \section asfdoc_sam0_tcc_extra_history Module History
* An overview of the module history is presented in the table below, with
* details on the enhancements and fixes made to the module since its first
* release. The current version of this corresponds to the newest version in
* the table.
*
* <table>
* <tr>
* <th>Changelog</th>
* </tr>
* <tr>
* <td>Add double buffering functionality</td>
* </tr>
* <tr>
* <td>Add fault handling functionality</td>
* </tr>
* <tr>
* <td>Initial Release</td>
* </tr>
* </table>
*/
/**
* \page asfdoc_sam0_tcc_exqsg Examples for TCC Driver
*
* This is a list of the available Quick Start guides (QSGs) and example
* applications for \ref asfdoc_sam0_tcc_group. QSGs are simple examples with
* step-by-step instructions to configure and use this driver in a selection of
* use cases. Note that QSGs can be compiled as a standalone application or be
* added to the user application.
*
* - \subpage asfdoc_sam0_tcc_basic_use_case
* - \subpage asfdoc_sam0_tcc_buffering_use_case
* \if TCC_CALLBACK_MODE
* - \subpage asfdoc_sam0_tcc_timer_use_case
* - \subpage asfdoc_sam0_tcc_callback_use_case
* - \subpage asfdoc_sam0_tcc_faultx_use_case
* - \subpage asfdoc_sam0_tcc_faultn_use_case
* \endif
* - \subpage asfdoc_sam0_tcc_dma_use_case
*
* \page asfdoc_sam0_tcc_document_revision_history Document Revision History
*
* <table>
* <tr>
* <th>Doc. Rev.</th>
* <th>Date</th>
* <th>Comments</th>
* </tr>
* <tr>
* <td>42256C</td>
* <td>12/2015</td>
* <td>Added support for SAM L21/L22, SAM DA1, and SAM C20/C21</td>
* </tr>
* <tr>
* <td>42256B</td>
* <td>12/2014</td>
* <td>Added fault handling functionality.
* Added double buffering functionality with use case.
* Added timer use case.
* Added SAM R21/D10/D11 support.</td>
* </tr>
* <tr>
* <td>42256A</td>
* <td>01/2014</td>
* <td>Initial release</td>
* </tr>
* </table>
*/
#endif /* TCC_H_INCLUDED */