circuitpython/nrf5/uart.c

448 lines
14 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Glenn Ruben Bakke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <string.h>
#include <stdarg.h>
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "uart.h"
#include "mpconfigboard.h"
#include "nrf.h"
#include "mphalport.h"
#include "hal_uart.h"
#define CHAR_WIDTH_8BIT (0)
#define CHAR_WIDTH_9BIT (1)
struct _pyb_uart_obj_t {
mp_obj_base_t base;
UART_HandleTypeDef uart;
IRQn_Type irqn;
pyb_uart_t uart_id : 8;
bool is_enabled : 1;
byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars
uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit
uint16_t timeout; // timeout waiting for first char
uint16_t timeout_char; // timeout waiting between chars
uint16_t read_buf_len; // len in chars; buf can hold len-1 chars
volatile uint16_t read_buf_head; // indexes first empty slot
uint16_t read_buf_tail; // indexes first full slot (not full if equals head)
byte *read_buf; // byte or uint16_t, depending on char size
};
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in);
void uart_init0(void) {
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL;
}
}
// unregister all interrupt sources
void uart_deinit(void) {
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i];
if (uart_obj != NULL) {
pyb_uart_deinit(uart_obj);
}
}
}
/// \method deinit()
/// Turn off the UART bus.
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
//// assumes Init parameters have been set up correctly
STATIC bool uart_init2(pyb_uart_obj_t * uart_obj) {
uart_obj->is_enabled = true;
return true;
}
void uart_irq_handler(mp_uint_t uart_id) {
}
bool uart_rx_any(pyb_uart_obj_t *uart_obj) {
// TODO: uart will block for now.
return true;
}
// Waits at most timeout milliseconds for at least 1 char to become ready for
// reading (from buf or for direct reading).
// Returns true if something available, false if not.
STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
return false;
}
int uart_rx_char(pyb_uart_obj_t *self) {
return (int)nrf_uart_char_read();
}
STATIC void uart_tx_char(pyb_uart_obj_t * self, int c) {
nrf_uart_char_write((char)c);
}
void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
uart_tx_char(uart_obj, *str);
}
}
void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
if (*str == '\n') {
uart_tx_char(uart_obj, '\r');
}
uart_tx_char(uart_obj, *str);
}
}
/******************************************************************************/
/* Micro Python bindings */
STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
}
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, read_buf_len=64)
///
/// Initialise the UART bus with the given parameters:
///
/// - `baudrate` is the clock rate.
/// - `bits` is the number of bits per byte, 7, 8 or 9.
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
/// - `stop` is the number of stop bits, 1 or 2.
/// - `timeout` is the timeout in milliseconds to wait for the first character.
/// - `timeout_char` is the timeout in milliseconds to wait between characters.
/// - `read_buf_len` is the character length of the read buffer (0 to disable).
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the UART configuration values
memset(&self->uart, 0, sizeof(self->uart));
UART_InitTypeDef *init = &self->uart.init;
// baudrate
init->baud_rate = args[0].u_int;
// flow control
init->flow_control = args[4].u_int;
// init UART (if it fails, it's because the port doesn't exist)
if (!uart_init2(self)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", self->uart_id));
}
// set timeouts
self->timeout = args[5].u_int;
self->timeout_char = args[6].u_int;
// setup the read buffer
m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
self->read_buf_head = 0;
self->read_buf_tail = 0;
if (args[7].u_int <= 0) {
// no read buffer
self->read_buf_len = 0;
self->read_buf = NULL;
} else {
// read buffer using interrupts
self->read_buf_len = args[7].u_int;
self->read_buf = m_new(byte, args[7].u_int << self->char_width);
}
hal_uart_init_t uart_init = {
.rx_pin = MICROPY_HW_UART1_RX,
.tx_pin = MICROPY_HW_UART1_TX,
#if MICROPY_HW_UART1_HWFC
.rts_pin = MICROPY_HW_UART1_RTS,
.cts_pin = MICROPY_HW_UART1_CTS,
#endif
#if MICROPY_HW_UART1_HWFC
.flow_control = true,
#else
.flow_control = false,
#endif
.use_parity = false,
.baud_rate = HAL_UART_BAUD_115K2,
#if (BLUETOOTH_SD == 100)
.irq_priority = 3
#else
.irq_priority = 6
#endif
};
nrf_uart_init(&uart_init);
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct a UART object.
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out port
int uart_id = 0;
if (MP_OBJ_IS_STR(args[0])) {
const char *port = mp_obj_str_get_str(args[0]);
if (0) {
} else if (strcmp(port, "COM1") == 0) {
uart_id = PYB_UART_1;
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) does not exist", port));
}
} else {
uart_id = mp_obj_get_int(args[0]);
if (uart_id < 1 || uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", uart_id));
}
}
pyb_uart_obj_t *self;
if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) {
// create new UART object
self = m_new0(pyb_uart_obj_t, 1);
self->base.type = &pyb_uart_type;
self->uart_id = uart_id;
MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self;
} else {
// reference existing UART object
self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];
}
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
}
return self;
}
/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
if (uart_rx_any(self)) {
return mp_const_true;
} else {
return mp_const_false;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
/// \method writechar(char)
/// Write a single character on the bus. `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
pyb_uart_obj_t *self = self_in;
// get the character to write (might be 9 bits)
uint16_t data = mp_obj_get_int(char_in);
for (int i = 0; i < 2; i++) {
uart_tx_char(self, (int)(&data)[i]);
}
self->uart.instance->TASKS_STOPTX = 0;
HAL_StatusTypeDef status = self->uart.instance->EVENTS_ERROR;
if (status != HAL_OK) {
mp_hal_raise(status);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);
/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer. Returns -1 on timeout.
STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
if (uart_rx_wait(self, self->timeout)) {
return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
} else {
// return -1 on timeout
return MP_OBJ_NEW_SMALL_INT(-1);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);
// uart.sendbreak()
STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak);
STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = {
// instance methods
//{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj },
/// \method read([nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj },
/// \method readall()
{ MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj },
/// \method readline()
{ MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj},
/// \method readinto(buf[, nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj },
/// \method writechar(buf)
{ MP_OBJ_NEW_QSTR(MP_QSTR_writechar), (mp_obj_t)&pyb_uart_writechar_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readchar), (mp_obj_t)&pyb_uart_readchar_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sendbreak), (mp_obj_t)&pyb_uart_sendbreak_obj },
// class constants
/*
{ MP_OBJ_NEW_QSTR(MP_QSTR_RTS), MP_OBJ_NEW_SMALL_INT(UART_HWCONTROL_RTS) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_CTS), MP_OBJ_NEW_SMALL_INT(UART_HWCONTROL_CTS) },
*/
};
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = self_in;
byte *buf = buf_in;
// check that size is a multiple of character width
if (size & self->char_width) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
// convert byte size to char size
size >>= self->char_width;
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
// read the data
byte * orig_buf = buf;
for (;;) {
int data = uart_rx_char(self);
*buf++ = data;
if (--size == 0) {
// return number of bytes read
return buf - orig_buf;
}
}
}
STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = self_in;
const byte *buf = buf_in;
// check that size is a multiple of character width
if (size & self->char_width) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
for (int i = 0; i < size; i++) {
uart_tx_char(self, (int)((uint8_t *)buf)[i]);
}
HAL_StatusTypeDef status = self->uart.instance->EVENTS_ERROR;
if (status == HAL_OK) {
// return number of bytes written
return size;
} else {
*errcode = mp_hal_status_to_errno_table[status];
return MP_STREAM_ERROR;
}
}
STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
pyb_uart_obj_t *self = self_in;
(void)self;
return MP_STREAM_ERROR;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = pyb_uart_read,
.write = pyb_uart_write,
.ioctl = pyb_uart_ioctl,
.is_text = false,
};
const mp_obj_type_t pyb_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = pyb_uart_print,
.make_new = pyb_uart_make_new,
.getiter = mp_identity,
.iternext = mp_stream_unbuffered_iter,
.protocol = &uart_stream_p,
.locals_dict = (mp_obj_t)&pyb_uart_locals_dict,
};