circuitpython/ports/cc3200/mpthreadport.c

189 lines
6.0 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mpthread.h"
#include "py/mphal.h"
#include "mptask.h"
#include "task.h"
#include "irq.h"
#if MICROPY_PY_THREAD
// this structure forms a linked list, one node per active thread
typedef struct _thread_t {
TaskHandle_t id; // system id of thread
int ready; // whether the thread is ready and running
void *arg; // thread Python args, a GC root pointer
void *stack; // pointer to the stack
size_t stack_len; // number of words in the stack
struct _thread_t *next;
} thread_t;
// the mutex controls access to the linked list
STATIC mp_thread_mutex_t thread_mutex;
STATIC thread_t thread_entry0;
STATIC thread_t *thread; // root pointer, handled bp mp_thread_gc_others
void mp_thread_init(void) {
mp_thread_mutex_init(&thread_mutex);
mp_thread_set_state(&mp_state_ctx.thread);
// create first entry in linked list of all threads
thread = &thread_entry0;
thread->id = xTaskGetCurrentTaskHandle();
thread->ready = 1;
thread->arg = NULL;
thread->stack = mpTaskStack;
thread->stack_len = MICROPY_TASK_STACK_LEN;
thread->next = NULL;
}
void mp_thread_gc_others(void) {
mp_thread_mutex_lock(&thread_mutex, 1);
for (thread_t *th = thread; th != NULL; th = th->next) {
gc_collect_root((void **)&th, 1);
gc_collect_root(&th->arg, 1); // probably not needed
if (th->id == xTaskGetCurrentTaskHandle()) {
continue;
}
if (!th->ready) {
continue;
}
gc_collect_root(th->stack, th->stack_len); // probably not needed
}
mp_thread_mutex_unlock(&thread_mutex);
}
mp_state_thread_t *mp_thread_get_state(void) {
return pvTaskGetThreadLocalStoragePointer(NULL, 0);
}
void mp_thread_set_state(mp_state_thread_t *state) {
vTaskSetThreadLocalStoragePointer(NULL, 0, state);
}
void mp_thread_start(void) {
mp_thread_mutex_lock(&thread_mutex, 1);
for (thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == xTaskGetCurrentTaskHandle()) {
th->ready = 1;
break;
}
}
mp_thread_mutex_unlock(&thread_mutex);
}
STATIC void *(*ext_thread_entry)(void *) = NULL;
STATIC void freertos_entry(void *arg) {
if (ext_thread_entry) {
ext_thread_entry(arg);
}
vTaskDelete(NULL);
for (;;) {
}
}
void mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) {
// store thread entry function into a global variable so we can access it
ext_thread_entry = entry;
if (*stack_size == 0) {
*stack_size = 4096; // default stack size
} else if (*stack_size < 2048) {
*stack_size = 2048; // minimum stack size
}
// allocate TCB, stack and linked-list node (must be outside thread_mutex lock)
StaticTask_t *tcb = m_new(StaticTask_t, 1);
StackType_t *stack = m_new(StackType_t, *stack_size / sizeof(StackType_t));
thread_t *th = m_new_obj(thread_t);
mp_thread_mutex_lock(&thread_mutex, 1);
// create thread
TaskHandle_t id = xTaskCreateStatic(freertos_entry, "Thread", *stack_size / sizeof(void *), arg, 2, stack, tcb);
if (id == NULL) {
mp_thread_mutex_unlock(&thread_mutex);
mp_raise_msg(&mp_type_OSError, "can't create thread");
}
// add thread to linked list of all threads
th->id = id;
th->ready = 0;
th->arg = arg;
th->stack = stack;
th->stack_len = *stack_size / sizeof(StackType_t);
th->next = thread;
thread = th;
mp_thread_mutex_unlock(&thread_mutex);
// adjust stack_size to provide room to recover from hitting the limit
*stack_size -= 512;
}
void mp_thread_finish(void) {
mp_thread_mutex_lock(&thread_mutex, 1);
// TODO unlink from list
for (thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == xTaskGetCurrentTaskHandle()) {
th->ready = 0;
break;
}
}
mp_thread_mutex_unlock(&thread_mutex);
}
void mp_thread_mutex_init(mp_thread_mutex_t *mutex) {
mutex->handle = xSemaphoreCreateMutexStatic(&mutex->buffer);
}
// To allow hard interrupts to work with threading we only take/give the semaphore
// if we are not within an interrupt context and interrupts are enabled.
int mp_thread_mutex_lock(mp_thread_mutex_t *mutex, int wait) {
if ((HAL_NVIC_INT_CTRL_REG & HAL_VECTACTIVE_MASK) == 0 && query_irq() == IRQ_STATE_ENABLED) {
int ret = xSemaphoreTake(mutex->handle, wait ? portMAX_DELAY : 0);
return ret == pdTRUE;
} else {
return 1;
}
}
void mp_thread_mutex_unlock(mp_thread_mutex_t *mutex) {
if ((HAL_NVIC_INT_CTRL_REG & HAL_VECTACTIVE_MASK) == 0 && query_irq() == IRQ_STATE_ENABLED) {
xSemaphoreGive(mutex->handle);
// TODO check return value
}
}
#endif // MICROPY_PY_THREAD