circuitpython/py/modmicropython.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

218 lines
8.3 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/builtin.h"
#include "py/stackctrl.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mphal.h"
#if MICROPY_PY_MICROPYTHON
// Various builtins specific to MicroPython runtime,
// living in micropython module
#if MICROPY_ENABLE_COMPILER
STATIC mp_obj_t mp_micropython_opt_level(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
return MP_OBJ_NEW_SMALL_INT(MP_STATE_VM(mp_optimise_value));
} else {
MP_STATE_VM(mp_optimise_value) = mp_obj_get_int(args[0]);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_micropython_opt_level_obj, 0, 1, mp_micropython_opt_level);
#endif
#if MICROPY_PY_MICROPYTHON_MEM_INFO
#if MICROPY_MEM_STATS
STATIC mp_obj_t mp_micropython_mem_total(void) {
return MP_OBJ_NEW_SMALL_INT(m_get_total_bytes_allocated());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_micropython_mem_total_obj, mp_micropython_mem_total);
STATIC mp_obj_t mp_micropython_mem_current(void) {
return MP_OBJ_NEW_SMALL_INT(m_get_current_bytes_allocated());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_micropython_mem_current_obj, mp_micropython_mem_current);
STATIC mp_obj_t mp_micropython_mem_peak(void) {
return MP_OBJ_NEW_SMALL_INT(m_get_peak_bytes_allocated());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_micropython_mem_peak_obj, mp_micropython_mem_peak);
#endif
mp_obj_t mp_micropython_mem_info(size_t n_args, const mp_obj_t *args) {
(void)args;
#if MICROPY_MEM_STATS
mp_printf(&mp_plat_print, "mem: total=" UINT_FMT ", current=" UINT_FMT ", peak=" UINT_FMT "\n",
(mp_uint_t)m_get_total_bytes_allocated(), (mp_uint_t)m_get_current_bytes_allocated(), (mp_uint_t)m_get_peak_bytes_allocated());
#endif
#if MICROPY_STACK_CHECK
mp_printf(&mp_plat_print, "stack: " UINT_FMT " out of " UINT_FMT "\n",
mp_stack_usage(), (mp_uint_t)MP_STATE_THREAD(stack_limit));
#else
mp_printf(&mp_plat_print, "stack: " UINT_FMT "\n", mp_stack_usage());
#endif
#if MICROPY_ENABLE_GC
gc_dump_info(&mp_plat_print);
if (n_args == 1) {
// arg given means dump gc allocation table
gc_dump_alloc_table(&mp_plat_print);
}
#else
(void)n_args;
#endif
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_micropython_mem_info_obj, 0, 1, mp_micropython_mem_info);
STATIC mp_obj_t mp_micropython_qstr_info(size_t n_args, const mp_obj_t *args) {
(void)args;
size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
mp_printf(&mp_plat_print, "qstr pool: n_pool=%u, n_qstr=%u, n_str_data_bytes=%u, n_total_bytes=%u\n",
n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
if (n_args == 1) {
// arg given means dump qstr data
qstr_dump_data();
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_micropython_qstr_info_obj, 0, 1, mp_micropython_qstr_info);
#endif // MICROPY_PY_MICROPYTHON_MEM_INFO
#if MICROPY_PY_MICROPYTHON_STACK_USE
STATIC mp_obj_t mp_micropython_stack_use(void) {
return MP_OBJ_NEW_SMALL_INT(mp_stack_usage());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_micropython_stack_use_obj, mp_micropython_stack_use);
#endif
py: Introduce a Python stack for scoped allocation. This patch introduces the MICROPY_ENABLE_PYSTACK option (disabled by default) which enables a "Python stack" that allows to allocate and free memory in a scoped, or Last-In-First-Out (LIFO) way, similar to alloca(). A new memory allocation API is introduced along with this Py-stack. It includes both "local" and "nonlocal" LIFO allocation. Local allocation is intended to be equivalent to using alloca(), whereby the same function must free the memory. Nonlocal allocation is where another function may free the memory, so long as it's still LIFO. Follow-up patches will convert all uses of alloca() and VLA to the new scoped allocation API. The old behaviour (using alloca()) will still be available, but when MICROPY_ENABLE_PYSTACK is enabled then alloca() is no longer required or used. The benefits of enabling this option are (or will be once subsequent patches are made to convert alloca()/VLA): - Toolchains without alloca() can use this feature to obtain correct and efficient scoped memory allocation (compared to using the heap instead of alloca(), which is slower). - Even if alloca() is available, enabling the Py-stack gives slightly more efficient use of stack space when calling nested Python functions, due to the way that compilers implement alloca(). - Enabling the Py-stack with the stackless mode allows for even more efficient stack usage, as well as retaining high performance (because the heap is no longer used to build and destroy stackless code states). - With Py-stack and stackless enabled, Python-calling-Python is no longer recursive in the C mp_execute_bytecode function. The micropython.pystack_use() function is included to measure usage of the Python stack.
2017-11-26 07:28:40 -05:00
#if MICROPY_ENABLE_PYSTACK
STATIC mp_obj_t mp_micropython_pystack_use(void) {
return MP_OBJ_NEW_SMALL_INT(mp_pystack_usage());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_micropython_pystack_use_obj, mp_micropython_pystack_use);
#endif
#if MICROPY_ENABLE_GC
STATIC mp_obj_t mp_micropython_heap_lock(void) {
gc_lock();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_micropython_heap_lock_obj, mp_micropython_heap_lock);
STATIC mp_obj_t mp_micropython_heap_unlock(void) {
gc_unlock();
return MP_OBJ_NEW_SMALL_INT(MP_STATE_THREAD(gc_lock_depth));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_micropython_heap_unlock_obj, mp_micropython_heap_unlock);
#if MICROPY_PY_MICROPYTHON_HEAP_LOCKED
STATIC mp_obj_t mp_micropython_heap_locked(void) {
return MP_OBJ_NEW_SMALL_INT(MP_STATE_THREAD(gc_lock_depth));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_micropython_heap_locked_obj, mp_micropython_heap_locked);
#endif
#endif
#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF && (MICROPY_EMERGENCY_EXCEPTION_BUF_SIZE == 0)
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_alloc_emergency_exception_buf_obj, mp_alloc_emergency_exception_buf);
#endif
#if MICROPY_KBD_EXCEPTION
STATIC mp_obj_t mp_micropython_kbd_intr(mp_obj_t int_chr_in) {
mp_hal_set_interrupt_char(mp_obj_get_int(int_chr_in));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_micropython_kbd_intr_obj, mp_micropython_kbd_intr);
#endif
#if MICROPY_ENABLE_SCHEDULER
STATIC mp_obj_t mp_micropython_schedule(mp_obj_t function, mp_obj_t arg) {
if (!mp_sched_schedule(function, arg)) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("schedule queue full"));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_micropython_schedule_obj, mp_micropython_schedule);
#endif
STATIC const mp_rom_map_elem_t mp_module_micropython_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_micropython) },
{ MP_ROM_QSTR(MP_QSTR_const), MP_ROM_PTR(&mp_identity_obj) },
#if MICROPY_ENABLE_COMPILER
{ MP_ROM_QSTR(MP_QSTR_opt_level), MP_ROM_PTR(&mp_micropython_opt_level_obj) },
#endif
#if MICROPY_PY_MICROPYTHON_MEM_INFO
#if MICROPY_MEM_STATS
{ MP_ROM_QSTR(MP_QSTR_mem_total), MP_ROM_PTR(&mp_micropython_mem_total_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem_current), MP_ROM_PTR(&mp_micropython_mem_current_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem_peak), MP_ROM_PTR(&mp_micropython_mem_peak_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_mem_info), MP_ROM_PTR(&mp_micropython_mem_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_qstr_info), MP_ROM_PTR(&mp_micropython_qstr_info_obj) },
#endif
#if MICROPY_PY_MICROPYTHON_STACK_USE
{ MP_ROM_QSTR(MP_QSTR_stack_use), MP_ROM_PTR(&mp_micropython_stack_use_obj) },
#endif
#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF && (MICROPY_EMERGENCY_EXCEPTION_BUF_SIZE == 0)
{ MP_ROM_QSTR(MP_QSTR_alloc_emergency_exception_buf), MP_ROM_PTR(&mp_alloc_emergency_exception_buf_obj) },
#endif
py: Introduce a Python stack for scoped allocation. This patch introduces the MICROPY_ENABLE_PYSTACK option (disabled by default) which enables a "Python stack" that allows to allocate and free memory in a scoped, or Last-In-First-Out (LIFO) way, similar to alloca(). A new memory allocation API is introduced along with this Py-stack. It includes both "local" and "nonlocal" LIFO allocation. Local allocation is intended to be equivalent to using alloca(), whereby the same function must free the memory. Nonlocal allocation is where another function may free the memory, so long as it's still LIFO. Follow-up patches will convert all uses of alloca() and VLA to the new scoped allocation API. The old behaviour (using alloca()) will still be available, but when MICROPY_ENABLE_PYSTACK is enabled then alloca() is no longer required or used. The benefits of enabling this option are (or will be once subsequent patches are made to convert alloca()/VLA): - Toolchains without alloca() can use this feature to obtain correct and efficient scoped memory allocation (compared to using the heap instead of alloca(), which is slower). - Even if alloca() is available, enabling the Py-stack gives slightly more efficient use of stack space when calling nested Python functions, due to the way that compilers implement alloca(). - Enabling the Py-stack with the stackless mode allows for even more efficient stack usage, as well as retaining high performance (because the heap is no longer used to build and destroy stackless code states). - With Py-stack and stackless enabled, Python-calling-Python is no longer recursive in the C mp_execute_bytecode function. The micropython.pystack_use() function is included to measure usage of the Python stack.
2017-11-26 07:28:40 -05:00
#if MICROPY_ENABLE_PYSTACK
{ MP_ROM_QSTR(MP_QSTR_pystack_use), MP_ROM_PTR(&mp_micropython_pystack_use_obj) },
#endif
#if MICROPY_ENABLE_GC
{ MP_ROM_QSTR(MP_QSTR_heap_lock), MP_ROM_PTR(&mp_micropython_heap_lock_obj) },
{ MP_ROM_QSTR(MP_QSTR_heap_unlock), MP_ROM_PTR(&mp_micropython_heap_unlock_obj) },
#if MICROPY_PY_MICROPYTHON_HEAP_LOCKED
{ MP_ROM_QSTR(MP_QSTR_heap_locked), MP_ROM_PTR(&mp_micropython_heap_locked_obj) },
#endif
#endif
#if MICROPY_KBD_EXCEPTION
{ MP_ROM_QSTR(MP_QSTR_kbd_intr), MP_ROM_PTR(&mp_micropython_kbd_intr_obj) },
#endif
#if MICROPY_ENABLE_SCHEDULER
{ MP_ROM_QSTR(MP_QSTR_schedule), MP_ROM_PTR(&mp_micropython_schedule_obj) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(mp_module_micropython_globals, mp_module_micropython_globals_table);
const mp_obj_module_t mp_module_micropython = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&mp_module_micropython_globals,
};
MP_REGISTER_MODULE(MP_QSTR_micropython, mp_module_micropython);
#endif // MICROPY_PY_MICROPYTHON