circuitpython/tests/float/float_parse.py

37 lines
1.2 KiB
Python
Raw Normal View History

# test parsing of floats
2021-04-19 22:22:44 -07:00
inf = float("inf")
# it shouldn't matter where the decimal point is if the exponent balances the value
2021-04-19 22:22:44 -07:00
print(float("1234") - float("0.1234e4"))
print(float("1.015625") - float("1015625e-6"))
# very large integer part with a very negative exponent should cancel out
2021-04-19 22:22:44 -07:00
print("%.4e" % float("9" * 60 + "e-60"))
print("%.4e" % float("9" * 60 + "e-40"))
# many fractional digits
2021-04-19 22:22:44 -07:00
print(float("." + "9" * 70))
print(float("." + "9" * 70 + "e20"))
print(float("." + "9" * 70 + "e-50") == float("1e-50"))
# tiny fraction with large exponent
2021-04-19 22:22:44 -07:00
print(float("." + "0" * 60 + "1e10") == float("1e-51"))
print(float("." + "0" * 60 + "9e25") == float("9e-36"))
print(float("." + "0" * 60 + "9e40") == float("9e-21"))
# ensure that accuracy is retained when value is close to a subnormal
2021-04-19 22:22:44 -07:00
print(float("1.00000000000000000000e-37"))
print(float("10.0000000000000000000e-38"))
print(float("100.000000000000000000e-39"))
# very large exponent literal
2021-04-19 22:22:44 -07:00
print(float("1e4294967301"))
print(float("1e-4294967301"))
print(float("1e18446744073709551621"))
print(float("1e-18446744073709551621"))
# check small decimals are as close to their true value as possible
for n in range(1, 10):
2021-04-19 22:22:44 -07:00
print(float("0.%u" % n) == n / 10)