circuitpython/shared-module/bitbangio/SPI.c

168 lines
7.0 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "mpconfigport.h"
#include "py/obj.h"
#include "common-hal/microcontroller/types.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/nativeio/DigitalInOut.h"
#include "shared-module/bitbangio/types.h"
#define MAX_BAUDRATE (common_hal_mcu_get_clock_frequency() / 48)
extern void shared_module_bitbangio_spi_construct(bitbangio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
const mcu_pin_obj_t * miso, uint32_t baudrate) {
digitalinout_result_t result = common_hal_nativeio_digitalinout_construct(&self->clock, clock);
if (result != DIGITALINOUT_OK) {
return;
}
result = common_hal_nativeio_digitalinout_construct(&self->mosi, mosi);
if (result != DIGITALINOUT_OK) {
common_hal_nativeio_digitalinout_deinit(&self->clock);
return;
}
result = common_hal_nativeio_digitalinout_construct(&self->miso, miso);
if (result != DIGITALINOUT_OK) {
common_hal_nativeio_digitalinout_deinit(&self->clock);
common_hal_nativeio_digitalinout_deinit(&self->mosi);
return;
}
self->delay_half = 500000 / baudrate;
// round delay_half up so that: actual_baudrate <= requested_baudrate
if (500000 % baudrate != 0) {
self->delay_half += 1;
}
self->polarity = 0;
self->phase = 0;
}
extern void shared_module_bitbangio_spi_deinit(bitbangio_spi_obj_t *self) {
common_hal_nativeio_digitalinout_deinit(&self->clock);
common_hal_nativeio_digitalinout_deinit(&self->mosi);
common_hal_nativeio_digitalinout_deinit(&self->miso);
}
bool shared_module_bitbangio_spi_transfer(bitbangio_spi_obj_t *self,
const uint8_t *write_buffer, size_t write_buffer_len,
uint8_t *read_buffer, size_t read_buffer_len) {
uint32_t delay_half = self->delay_half;
// only MSB transfer is implemented
// If a port defines MICROPY_PY_MACHINE_SPI_MIN_DELAY, and the configured
// delay_half is equal to this value, then the software SPI implementation
// will run as fast as possible, limited only by CPU speed and GPIO time.
#ifdef MICROPY_PY_MACHINE_SPI_MIN_DELAY
if (delay_half <= MICROPY_PY_MACHINE_SPI_MIN_DELAY) {
for (size_t i = 0; i < write_buffer_len; ++i) {
uint8_t data_out = write_buffer[i];
for (int j = 0; j < 8; ++j, data_out <<= 1) {
common_hal_nativeio_digitalinout_set_value(&self->mosi, (data_out >> 7) & 1);
common_hal_nativeio_digitalinout_set_value(&self->clock, 1 - self->polarity);
common_hal_nativeio_digitalinout_set_value(&self->clock, self->polarity);
}
if (dest != NULL) {
dest[i] = data_in;
}
}
// Clock out zeroes while we read.
common_hal_nativeio_digitalinout_set_value(&self->mosi, false);
for (size_t i = 0; i < read_buffer_len; ++i) {
uint8_t data_in = 0;
for (int j = 0; j < 8; ++j, data_out <<= 1) {
common_hal_nativeio_digitalinout_set_value(&self->clock, 1 - self->polarity);
data_in = (data_in << 1) | common_hal_nativeio_digitalinout_get_value(&self->miso);
common_hal_nativeio_digitalinout_set_value(&self->clock, self->polarity);
}
read_buffer[i] = data_in;
}
return true;
}
#endif
for (size_t i = 0; i < write_buffer_len; ++i) {
uint8_t data_out = write_buffer[i];
for (int j = 0; j < 8; ++j, data_out <<= 1) {
common_hal_nativeio_digitalinout_set_value(&self->mosi, (data_out >> 7) & 1);
if (self->phase == 0) {
common_hal_mcu_delay_us(delay_half);
common_hal_nativeio_digitalinout_set_value(&self->clock, 1 - self->polarity);
} else {
common_hal_nativeio_digitalinout_set_value(&self->clock, 1 - self->polarity);
common_hal_mcu_delay_us(delay_half);
}
if (self->phase == 0) {
common_hal_mcu_delay_us(delay_half);
common_hal_nativeio_digitalinout_set_value(&self->clock, self->polarity);
} else {
common_hal_nativeio_digitalinout_set_value(&self->clock, self->polarity);
common_hal_mcu_delay_us(delay_half);
}
}
// Some ports need a regular callback, but probably we don't need
// to do this every byte, or even at all.
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK;
#endif
}
common_hal_nativeio_digitalinout_set_value(&self->mosi, false);
for (size_t i = 0; i < read_buffer_len; ++i) {
uint8_t data_in = 0;
for (int j = 0; j < 8; ++j) {
if (self->phase == 0) {
common_hal_mcu_delay_us(delay_half);
common_hal_nativeio_digitalinout_set_value(&self->clock, 1 - self->polarity);
} else {
common_hal_nativeio_digitalinout_set_value(&self->clock, 1 - self->polarity);
common_hal_mcu_delay_us(delay_half);
}
data_in = (data_in << 1) | common_hal_nativeio_digitalinout_get_value(&self->miso);
if (self->phase == 0) {
common_hal_mcu_delay_us(delay_half);
common_hal_nativeio_digitalinout_set_value(&self->clock, self->polarity);
} else {
common_hal_nativeio_digitalinout_set_value(&self->clock, self->polarity);
common_hal_mcu_delay_us(delay_half);
}
}
read_buffer[i] = data_in;
// Some ports need a regular callback, but probably we don't need
// to do this every byte, or even at all.
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK;
#endif
}
return true;
}