896 lines
34 KiB
C
Raw Normal View History

2014-10-02 14:34:15 +01:00
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "py/nlr.h"
#include "py/objtuple.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/mphal.h"
2014-10-02 14:34:15 +01:00
#include "bufhelper.h"
#include "can.h"
#include "pybioctl.h"
#include "irq.h"
2014-10-02 14:34:15 +01:00
#if MICROPY_HW_ENABLE_CAN
2014-11-21 23:24:23 +01:00
#define MASK16 (0)
#define LIST16 (1)
#define MASK32 (2)
#define LIST32 (3)
2014-10-02 14:34:15 +01:00
/// \moduleref pyb
/// \class CAN - controller area network communication bus
///
/// CAN implements the standard CAN communications protocol. At
/// the physical level it consists of 2 lines: RX and TX. Note that
/// to connect the pyboard to a CAN bus you must use a CAN transceiver
/// to convert the CAN logic signals from the pyboard to the correct
/// voltage levels on the bus.
///
/// Note that this driver does not yet support filter configuration
/// (it defaults to a single filter that lets through all messages),
/// or bus timing configuration (except for setting the prescaler).
///
/// Example usage (works without anything connected):
///
/// from pyb import CAN
/// can = pyb.CAN(1, pyb.CAN.LOOPBACK)
/// can.send('message!', 123) # send message with id 123
2014-10-02 14:34:15 +01:00
/// can.recv(0) # receive message on FIFO 0
typedef enum _rx_state_t {
RX_STATE_FIFO_EMPTY = 0,
RX_STATE_MESSAGE_PENDING,
RX_STATE_FIFO_FULL,
RX_STATE_FIFO_OVERFLOW,
} rx_state_t;
2014-10-02 14:34:15 +01:00
typedef struct _pyb_can_obj_t {
mp_obj_base_t base;
mp_obj_t rxcallback0;
mp_obj_t rxcallback1;
2014-10-02 14:34:15 +01:00
mp_uint_t can_id : 8;
bool is_enabled : 1;
bool extframe : 1;
byte rx_state0;
byte rx_state1;
2014-10-02 14:34:15 +01:00
CAN_HandleTypeDef can;
} pyb_can_obj_t;
STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in);
2014-11-21 23:24:23 +01:00
STATIC uint8_t can2_start_bank = 14;
2014-10-02 14:34:15 +01:00
// assumes Init parameters have been set up correctly
STATIC bool can_init(pyb_can_obj_t *can_obj) {
CAN_TypeDef *CANx = NULL;
uint32_t GPIO_Pin = 0;
uint8_t GPIO_AF_CANx = 0;
GPIO_TypeDef* GPIO_Port = NULL;
switch (can_obj->can_id) {
// CAN1 is on RX,TX = Y3,Y4 = PB9,PB9
case PYB_CAN_1:
CANx = CAN1;
GPIO_AF_CANx = GPIO_AF9_CAN1;
GPIO_Port = GPIOB;
GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9;
__CAN1_CLK_ENABLE();
break;
// CAN2 is on RX,TX = Y5,Y6 = PB12,PB13
case PYB_CAN_2:
CANx = CAN2;
GPIO_AF_CANx = GPIO_AF9_CAN2;
GPIO_Port = GPIOB;
GPIO_Pin = GPIO_PIN_12 | GPIO_PIN_13;
__CAN1_CLK_ENABLE(); // CAN2 is a "slave" and needs CAN1 enabled as well
__CAN2_CLK_ENABLE();
break;
default:
return false;
}
// init GPIO
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Pin = GPIO_Pin;
GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Alternate = GPIO_AF_CANx;
HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure);
// init CANx
can_obj->can.Instance = CANx;
HAL_CAN_Init(&can_obj->can);
can_obj->is_enabled = true;
return true;
}
void can_init0(void) {
for (uint i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all)); i++) {
MP_STATE_PORT(pyb_can_obj_all)[i] = NULL;
}
}
void can_deinit(void) {
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all)); i++) {
pyb_can_obj_t *can_obj = MP_STATE_PORT(pyb_can_obj_all)[i];
if (can_obj != NULL) {
pyb_can_deinit(can_obj);
}
2014-10-02 14:34:15 +01:00
}
}
2014-11-21 23:24:23 +01:00
STATIC void can_clearfilter(uint32_t f) {
CAN_FilterConfTypeDef filter;
filter.FilterIdHigh = 0;
filter.FilterIdLow = 0;
filter.FilterMaskIdHigh = 0;
filter.FilterMaskIdLow = 0;
filter.FilterFIFOAssignment = CAN_FILTER_FIFO0;
filter.FilterNumber = f;
filter.FilterMode = CAN_FILTERMODE_IDMASK;
filter.FilterScale = CAN_FILTERSCALE_16BIT;
filter.FilterActivation = DISABLE;
filter.BankNumber = can2_start_bank;
HAL_CAN_ConfigFilter(NULL, &filter);
}
// We have our own version of CAN transmit so we can handle Timeout=0 correctly.
STATIC HAL_StatusTypeDef CAN_Transmit(CAN_HandleTypeDef *hcan, uint32_t Timeout) {
uint32_t transmitmailbox;
uint32_t tickstart;
uint32_t rqcpflag;
uint32_t txokflag;
// Check the parameters
assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
// Select one empty transmit mailbox
if ((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) {
transmitmailbox = CAN_TXMAILBOX_0;
rqcpflag = CAN_FLAG_RQCP0;
txokflag = CAN_FLAG_TXOK0;
} else if ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) {
transmitmailbox = CAN_TXMAILBOX_1;
rqcpflag = CAN_FLAG_RQCP1;
txokflag = CAN_FLAG_TXOK1;
} else if ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2) {
transmitmailbox = CAN_TXMAILBOX_2;
rqcpflag = CAN_FLAG_RQCP2;
txokflag = CAN_FLAG_TXOK2;
} else {
transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
}
if (transmitmailbox != CAN_TXSTATUS_NOMAILBOX) {
// Set up the Id
hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
if (hcan->pTxMsg->IDE == CAN_ID_STD) {
assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
hcan->pTxMsg->RTR);
} else {
assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
hcan->pTxMsg->IDE | \
hcan->pTxMsg->RTR);
}
// Set up the DLC
hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
// Set up the data field
hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) |
((uint32_t)hcan->pTxMsg->Data[2] << 16) |
((uint32_t)hcan->pTxMsg->Data[1] << 8) |
((uint32_t)hcan->pTxMsg->Data[0]));
hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) |
((uint32_t)hcan->pTxMsg->Data[6] << 16) |
((uint32_t)hcan->pTxMsg->Data[5] << 8) |
((uint32_t)hcan->pTxMsg->Data[4]));
// Request transmission
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
if (Timeout == 0) {
return HAL_OK;
}
// Get tick
tickstart = HAL_GetTick();
// Check End of transmission flag
while (!(__HAL_CAN_TRANSMIT_STATUS(hcan, transmitmailbox))) {
// Check for the Timeout
if (Timeout != HAL_MAX_DELAY) {
if ((HAL_GetTick() - tickstart) > Timeout) {
// When the timeout expires, we try to abort the transmission of the packet
__HAL_CAN_CANCEL_TRANSMIT(hcan, transmitmailbox);
while (!__HAL_CAN_GET_FLAG(hcan, rqcpflag)) {
}
if (__HAL_CAN_GET_FLAG(hcan, txokflag)) {
// The abort attempt failed and the message was sent properly
return HAL_OK;
} else {
return HAL_TIMEOUT;
}
}
}
}
return HAL_OK;
} else {
return HAL_BUSY;
}
}
2014-10-02 14:34:15 +01:00
/******************************************************************************/
// Micro Python bindings
STATIC void pyb_can_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
2014-10-02 14:34:15 +01:00
pyb_can_obj_t *self = self_in;
if (!self->is_enabled) {
mp_printf(print, "CAN(%u)", self->can_id);
2014-10-02 14:34:15 +01:00
} else {
mp_printf(print, "CAN(%u, CAN.", self->can_id);
2014-10-02 14:34:15 +01:00
qstr mode;
switch (self->can.Init.Mode) {
case CAN_MODE_NORMAL: mode = MP_QSTR_NORMAL; break;
case CAN_MODE_LOOPBACK: mode = MP_QSTR_LOOPBACK; break;
case CAN_MODE_SILENT: mode = MP_QSTR_SILENT; break;
case CAN_MODE_SILENT_LOOPBACK: default: mode = MP_QSTR_SILENT_LOOPBACK; break;
}
mp_printf(print, "%q, extframe=", mode);
if (self->extframe) {
mode = MP_QSTR_True;
} else {
mode = MP_QSTR_False;
}
mp_printf(print, "%q)", mode);
2014-10-02 14:34:15 +01:00
}
}
// init(mode, extframe=False, prescaler=100, *, sjw=1, bs1=6, bs2=8)
2014-10-02 14:34:15 +01:00
STATIC mp_obj_t pyb_can_init_helper(pyb_can_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_MODE_NORMAL} },
{ MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_prescaler, MP_ARG_INT, {.u_int = 100} },
2014-10-02 14:34:15 +01:00
{ MP_QSTR_sjw, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_bs1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 6} },
{ MP_QSTR_bs2, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->extframe = args[1].u_bool;
2014-10-30 23:13:53 +00:00
2014-10-02 14:34:15 +01:00
// set the CAN configuration values
memset(&self->can, 0, sizeof(self->can));
CAN_InitTypeDef *init = &self->can.Init;
init->Mode = args[0].u_int << 4; // shift-left so modes fit in a small-int
init->Prescaler = args[2].u_int;
init->SJW = ((args[3].u_int - 1) & 3) << 24;
init->BS1 = ((args[4].u_int - 1) & 0xf) << 16;
init->BS2 = ((args[5].u_int - 1) & 7) << 20;
2014-10-02 14:34:15 +01:00
init->TTCM = DISABLE;
init->ABOM = DISABLE;
init->AWUM = DISABLE;
init->NART = DISABLE;
init->RFLM = DISABLE;
init->TXFP = DISABLE;
// init CAN (if it fails, it's because the port doesn't exist)
if (!can_init(self)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN port %d does not exist", self->can_id));
}
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct a CAN object on the given bus. `bus` can be 1-2, or 'YA' or 'YB'.
/// With no additional parameters, the CAN object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any). If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the CAN busses are:
///
/// - `CAN(1)` is on `YA`: `(RX, TX) = (Y3, Y4) = (PB8, PB9)`
/// - `CAN(2)` is on `YB`: `(RX, TX) = (Y5, Y6) = (PB12, PB13)`
STATIC mp_obj_t pyb_can_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
2014-10-02 14:34:15 +01:00
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out port
mp_uint_t can_idx;
2014-10-02 14:34:15 +01:00
if (MP_OBJ_IS_STR(args[0])) {
const char *port = mp_obj_str_get_str(args[0]);
if (0) {
#ifdef MICROPY_HW_CAN1_NAME
} else if (strcmp(port, MICROPY_HW_CAN1_NAME) == 0) {
can_idx = PYB_CAN_1;
#endif
#ifdef MICROPY_HW_CAN2_NAME
} else if (strcmp(port, MICROPY_HW_CAN2_NAME) == 0) {
can_idx = PYB_CAN_2;
2014-10-02 14:34:15 +01:00
#endif
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN(%s) does not exist", port));
2014-10-02 14:34:15 +01:00
}
} else {
can_idx = mp_obj_get_int(args[0]);
}
if (can_idx < 1 || can_idx > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all))) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN(%d) does not exist", can_idx));
}
pyb_can_obj_t *self;
if (MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] == NULL) {
self = m_new_obj(pyb_can_obj_t);
self->base.type = &pyb_can_type;
self->can_id = can_idx;
self->is_enabled = false;
MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] = self;
} else {
self = MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1];
2014-10-02 14:34:15 +01:00
}
if (!self->is_enabled || n_args > 1) {
if (self->is_enabled) {
// The caller is requesting a reconfiguration of the hardware
// this can only be done if the hardware is in init mode
pyb_can_deinit(self);
}
self->rxcallback0 = mp_const_none;
self->rxcallback1 = mp_const_none;
self->rx_state0 = RX_STATE_FIFO_EMPTY;
self->rx_state1 = RX_STATE_FIFO_EMPTY;
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_can_init_helper(self, n_args - 1, args + 1, &kw_args);
}
2014-10-02 14:34:15 +01:00
}
return self;
2014-10-02 14:34:15 +01:00
}
STATIC mp_obj_t pyb_can_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_can_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_init_obj, 1, pyb_can_init);
/// \method deinit()
/// Turn off the CAN bus.
STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in) {
pyb_can_obj_t *self = self_in;
self->is_enabled = false;
HAL_CAN_DeInit(&self->can);
if (self->can.Instance == CAN1) {
HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
__CAN1_FORCE_RESET();
__CAN1_RELEASE_RESET();
__CAN1_CLK_DISABLE();
} else if (self->can.Instance == CAN2) {
HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
__CAN2_FORCE_RESET();
__CAN2_RELEASE_RESET();
__CAN2_CLK_DISABLE();
}
2014-10-02 14:34:15 +01:00
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_deinit_obj, pyb_can_deinit);
/// \method any(fifo)
/// Return `True` if any message waiting on the FIFO, else `False`.
STATIC mp_obj_t pyb_can_any(mp_obj_t self_in, mp_obj_t fifo_in) {
pyb_can_obj_t *self = self_in;
mp_int_t fifo = mp_obj_get_int(fifo_in);
if (fifo == 0) {
if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0) {
return mp_const_true;
}
} else {
if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0) {
return mp_const_true;
}
}
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_any_obj, pyb_can_any);
/// \method send(send, addr, *, timeout=5000)
/// Send a message on the bus:
///
/// - `send` is the data to send (an integer to send, or a buffer object).
/// - `addr` is the address to send to
/// - `timeout` is the timeout in milliseconds to wait for the send.
///
/// Return value: `None`.
STATIC mp_obj_t pyb_can_send(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
2014-10-02 14:34:15 +01:00
};
// parse args
pyb_can_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
if (bufinfo.len > 8) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN data field too long"));
}
2014-10-02 14:34:15 +01:00
// send the data
CanTxMsgTypeDef tx_msg;
if (self->extframe) {
tx_msg.ExtId = args[1].u_int & 0x1FFFFFFF;
tx_msg.IDE = CAN_ID_EXT;
} else {
tx_msg.StdId = args[1].u_int & 0x7FF;
tx_msg.IDE = CAN_ID_STD;
}
if (args[3].u_bool == false) {
tx_msg.RTR = CAN_RTR_DATA;
} else {
tx_msg.RTR = CAN_RTR_REMOTE;
}
2014-10-02 14:34:15 +01:00
tx_msg.DLC = bufinfo.len;
for (mp_uint_t i = 0; i < bufinfo.len; i++) {
tx_msg.Data[i] = ((byte*)bufinfo.buf)[i]; // Data is uint32_t but holds only 1 byte
}
2014-10-02 14:34:15 +01:00
self->can.pTxMsg = &tx_msg;
HAL_StatusTypeDef status = CAN_Transmit(&self->can, args[2].u_int);
2014-10-02 14:34:15 +01:00
if (status != HAL_OK) {
mp_hal_raise(status);
2014-10-02 14:34:15 +01:00
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_send_obj, 1, pyb_can_send);
/// \method recv(fifo, *, timeout=5000)
///
/// Receive data on the bus:
///
/// - `fifo` is an integer, which is the FIFO to receive on
/// - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: buffer of data bytes.
STATIC mp_obj_t pyb_can_recv(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_can_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// receive the data
CanRxMsgTypeDef rx_msg;
self->can.pRxMsg = &rx_msg;
HAL_StatusTypeDef status = HAL_CAN_Receive(&self->can, args[0].u_int, args[1].u_int);
if (status != HAL_OK) {
mp_hal_raise(status);
2014-10-02 14:34:15 +01:00
}
// Manage the rx state machine
if ((args[0].u_int == CAN_FIFO0 && self->rxcallback0 != mp_const_none) ||
(args[0].u_int == CAN_FIFO1 && self->rxcallback1 != mp_const_none)) {
byte *state = (args[0].u_int == CAN_FIFO0) ? &self->rx_state0 : &self->rx_state1;
switch (*state) {
case RX_STATE_FIFO_EMPTY:
break;
case RX_STATE_MESSAGE_PENDING:
if (__HAL_CAN_MSG_PENDING(&self->can, args[0].u_int) == 0) {
// Fifo is empty
__HAL_CAN_ENABLE_IT(&self->can, (args[0].u_int == CAN_FIFO0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
*state = RX_STATE_FIFO_EMPTY;
}
break;
case RX_STATE_FIFO_FULL:
__HAL_CAN_ENABLE_IT(&self->can, (args[0].u_int == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
*state = RX_STATE_MESSAGE_PENDING;
break;
case RX_STATE_FIFO_OVERFLOW:
__HAL_CAN_ENABLE_IT(&self->can, (args[0].u_int == CAN_FIFO0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
__HAL_CAN_ENABLE_IT(&self->can, (args[0].u_int == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
*state = RX_STATE_MESSAGE_PENDING;
break;
}
}
2014-10-02 14:34:15 +01:00
// return the received data
// TODO use a namedtuple (when namedtuple types can be stored in ROM)
mp_obj_tuple_t *tuple = mp_obj_new_tuple(4, NULL);
if (rx_msg.IDE == CAN_ID_STD) {
tuple->items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.StdId);
} else {
tuple->items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.ExtId);
}
tuple->items[1] = rx_msg.RTR == CAN_RTR_REMOTE ? mp_const_true : mp_const_false;
2014-10-02 14:34:15 +01:00
tuple->items[2] = MP_OBJ_NEW_SMALL_INT(rx_msg.FMI);
vstr_t vstr;
vstr_init_len(&vstr, rx_msg.DLC);
2014-10-02 14:34:15 +01:00
for (mp_uint_t i = 0; i < rx_msg.DLC; i++) {
vstr.buf[i] = rx_msg.Data[i]; // Data is uint32_t but holds only 1 byte
2014-10-02 14:34:15 +01:00
}
tuple->items[3] = mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
2014-10-02 14:34:15 +01:00
return tuple;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_recv_obj, 1, pyb_can_recv);
2014-11-21 23:24:23 +01:00
/// \class method initfilterbanks
///
/// Set up the filterbanks. All filter will be disabled and set to their reset states.
///
/// - `banks` is an integer that sets how many filter banks that are reserved for CAN1.
/// 0 -> no filters assigned for CAN1
/// 28 -> all filters are assigned to CAN1
/// CAN2 will get the rest of the 28 available.
///
/// Return value: none.
STATIC mp_obj_t pyb_can_initfilterbanks(mp_obj_t self, mp_obj_t bank_in) {
can2_start_bank = mp_obj_get_int(bank_in);
for (int f = 0; f < 28; f++) {
can_clearfilter(f);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_initfilterbanks_fun_obj, pyb_can_initfilterbanks);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pyb_can_initfilterbanks_obj, (const mp_obj_t)&pyb_can_initfilterbanks_fun_obj);
STATIC mp_obj_t pyb_can_clearfilter(mp_obj_t self_in, mp_obj_t bank_in) {
pyb_can_obj_t *self = self_in;
mp_int_t f = mp_obj_get_int(bank_in);
if (self->can_id == 2) {
f += can2_start_bank;
}
can_clearfilter(f);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_clearfilter_obj, pyb_can_clearfilter);
/// Configures a filterbank
/// Return value: `None`.
#define EXTENDED_ID_TO_16BIT_FILTER(id) (((id & 0xC00000) >> 13) | ((id & 0x38000) >> 15)) | 8
STATIC mp_obj_t pyb_can_setfilter(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_bank, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_FILTER_FIFO0} },
{ MP_QSTR_params, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
2014-11-21 23:24:23 +01:00
};
// parse args
pyb_can_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_uint_t len;
mp_uint_t rtr_len;
mp_uint_t rtr_masks[4] = {0, 0, 0, 0};
mp_obj_t *rtr_flags;
2014-11-21 23:24:23 +01:00
mp_obj_t *params;
mp_obj_get_array(args[3].u_obj, &len, &params);
if (args[4].u_obj != MP_OBJ_NULL){
mp_obj_get_array(args[4].u_obj, &rtr_len, &rtr_flags);
}
2014-11-21 23:24:23 +01:00
CAN_FilterConfTypeDef filter;
if (args[1].u_int == MASK16 || args[1].u_int == LIST16) {
if (len != 4) {
goto error;
}
filter.FilterScale = CAN_FILTERSCALE_16BIT;
if (self->extframe) {
if (args[4].u_obj != MP_OBJ_NULL) {
if (args[1].u_int == MASK16) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = 0x02;
rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
rtr_masks[3] = 0x02;
} else { // LIST16
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x02 : 0;
rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x02 : 0;
}
}
filter.FilterIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[0])) | rtr_masks[0]; // id1
filter.FilterMaskIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[1])) | rtr_masks[1]; // mask1
filter.FilterIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[2])) | rtr_masks[2]; // id2
filter.FilterMaskIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[3])) | rtr_masks[3]; // mask2
} else { // Basic frames
if (args[4].u_obj != MP_OBJ_NULL) {
if (args[1].u_int == MASK16) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
rtr_masks[1] = 0x10;
rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
rtr_masks[3] = 0x10;
} else { // LIST16
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x10 : 0;
rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x10 : 0;
}
}
filter.FilterIdLow = (mp_obj_get_int(params[0]) << 5) | rtr_masks[0]; // id1
filter.FilterMaskIdLow = (mp_obj_get_int(params[1]) << 5) | rtr_masks[1]; // mask1
filter.FilterIdHigh = (mp_obj_get_int(params[2]) << 5) | rtr_masks[2]; // id2
filter.FilterMaskIdHigh = (mp_obj_get_int(params[3]) << 5) | rtr_masks[3]; // mask2
2014-11-21 23:24:23 +01:00
}
if (args[1].u_int == MASK16) {
filter.FilterMode = CAN_FILTERMODE_IDMASK;
}
if (args[1].u_int == LIST16) {
filter.FilterMode = CAN_FILTERMODE_IDLIST;
}
}
else if (args[1].u_int == MASK32 || args[1].u_int == LIST32) {
if (len != 2) {
goto error;
}
filter.FilterScale = CAN_FILTERSCALE_32BIT;
if (args[4].u_obj != MP_OBJ_NULL) {
if (args[1].u_int == MASK32) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = 0x02;
} else { // LIST32
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
}
}
filter.FilterIdHigh = (mp_obj_get_int(params[0]) & 0x1FFFE000) >> 13;
filter.FilterIdLow = (((mp_obj_get_int(params[0]) & 0x00001FFF) << 3) | 4) | rtr_masks[0];
filter.FilterMaskIdHigh = (mp_obj_get_int(params[1]) & 0x1FFFE000 ) >> 13;
filter.FilterMaskIdLow = (((mp_obj_get_int(params[1]) & 0x00001FFF) << 3) | 4) | rtr_masks[1];
2014-11-21 23:24:23 +01:00
if (args[1].u_int == MASK32) {
filter.FilterMode = CAN_FILTERMODE_IDMASK;
}
if (args[1].u_int == LIST32) {
filter.FilterMode = CAN_FILTERMODE_IDLIST;
}
} else {
goto error;
}
filter.FilterFIFOAssignment = args[2].u_int; // fifo
filter.FilterNumber = args[0].u_int; // bank
if (self->can_id == 1) {
if (filter.FilterNumber >= can2_start_bank) {
goto error;
}
} else {
filter.FilterNumber = filter.FilterNumber + can2_start_bank;
if (filter.FilterNumber > 27) {
goto error;
}
}
filter.FilterActivation = ENABLE;
filter.BankNumber = can2_start_bank;
HAL_CAN_ConfigFilter(&self->can, &filter);
return mp_const_none;
error:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN filter parameter error"));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_setfilter_obj, 1, pyb_can_setfilter);
STATIC mp_obj_t pyb_can_rxcallback(mp_obj_t self_in, mp_obj_t fifo_in, mp_obj_t callback_in) {
pyb_can_obj_t *self = self_in;
mp_int_t fifo = mp_obj_get_int(fifo_in);
mp_obj_t *callback;
callback = (fifo == 0) ? &self->rxcallback0 : &self->rxcallback1;
if (callback_in == mp_const_none) {
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FF0 : CAN_IT_FF1);
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
*callback = mp_const_none;
} else if (*callback != mp_const_none) {
// Rx call backs has already been initialized
// only the callback function should be changed
*callback = callback_in;
} else if (mp_obj_is_callable(callback_in)) {
*callback = callback_in;
uint32_t irq;
if (self->can_id == PYB_CAN_1) {
irq = (fifo == 0) ? CAN1_RX0_IRQn : CAN1_RX1_IRQn;
} else {
irq = (fifo == 0) ? CAN2_RX0_IRQn : CAN2_RX1_IRQn;
}
HAL_NVIC_SetPriority(irq, IRQ_PRI_CAN, IRQ_SUBPRI_CAN);
HAL_NVIC_EnableIRQ(irq);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FF0 : CAN_IT_FF1);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_can_rxcallback_obj, pyb_can_rxcallback);
2014-10-02 14:34:15 +01:00
STATIC const mp_map_elem_t pyb_can_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_can_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_can_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_can_any_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_can_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_can_recv_obj },
2014-11-21 23:24:23 +01:00
{ MP_OBJ_NEW_QSTR(MP_QSTR_initfilterbanks), (mp_obj_t)&pyb_can_initfilterbanks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_setfilter), (mp_obj_t)&pyb_can_setfilter_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_clearfilter), (mp_obj_t)&pyb_can_clearfilter_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_rxcallback), (mp_obj_t)&pyb_can_rxcallback_obj },
2014-10-02 14:34:15 +01:00
// class constants
// Note: we use the ST constants >> 4 so they fit in a small-int. The
// right-shift is undone when the constants are used in the init function.
{ MP_OBJ_NEW_QSTR(MP_QSTR_NORMAL), MP_OBJ_NEW_SMALL_INT(CAN_MODE_NORMAL >> 4) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LOOPBACK), MP_OBJ_NEW_SMALL_INT(CAN_MODE_LOOPBACK >> 4) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SILENT), MP_OBJ_NEW_SMALL_INT(CAN_MODE_SILENT >> 4) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SILENT_LOOPBACK), MP_OBJ_NEW_SMALL_INT(CAN_MODE_SILENT_LOOPBACK >> 4) },
2014-11-21 23:24:23 +01:00
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASK16), MP_OBJ_NEW_SMALL_INT(MASK16) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LIST16), MP_OBJ_NEW_SMALL_INT(LIST16) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASK32), MP_OBJ_NEW_SMALL_INT(MASK32) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LIST32), MP_OBJ_NEW_SMALL_INT(LIST32) },
2014-10-02 14:34:15 +01:00
};
STATIC MP_DEFINE_CONST_DICT(pyb_can_locals_dict, pyb_can_locals_dict_table);
mp_uint_t can_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
2014-10-02 14:34:15 +01:00
pyb_can_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_IOCTL_POLL) {
mp_uint_t flags = arg;
2014-10-02 14:34:15 +01:00
ret = 0;
if ((flags & MP_IOCTL_POLL_RD)
&& ((__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0)
|| (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0))) {
ret |= MP_IOCTL_POLL_RD;
}
if ((flags & MP_IOCTL_POLL_WR) && (self->can.Instance->TSR & CAN_TSR_TME)) {
ret |= MP_IOCTL_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
2014-10-02 14:34:15 +01:00
ret = -1;
}
return ret;
}
void can_rx_irq_handler(uint can_id, uint fifo_id) {
mp_obj_t callback;
pyb_can_obj_t *self;
mp_obj_t irq_reason = MP_OBJ_NEW_SMALL_INT(0);
byte *state;
self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1];
if (fifo_id == CAN_FIFO0) {
callback = self->rxcallback0;
state = &self->rx_state0;
} else {
callback = self->rxcallback1;
state = &self->rx_state1;
}
switch (*state) {
case RX_STATE_FIFO_EMPTY:
__HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
irq_reason = MP_OBJ_NEW_SMALL_INT(0);
*state = RX_STATE_MESSAGE_PENDING;
break;
case RX_STATE_MESSAGE_PENDING:
__HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
irq_reason = MP_OBJ_NEW_SMALL_INT(1);
*state = RX_STATE_FIFO_FULL;
break;
case RX_STATE_FIFO_FULL:
__HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
irq_reason = MP_OBJ_NEW_SMALL_INT(2);
*state = RX_STATE_FIFO_OVERFLOW;
break;
case RX_STATE_FIFO_OVERFLOW:
// This should never happen
break;
}
if (callback != mp_const_none) {
gc_lock();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_call_function_2(callback, self, irq_reason);
nlr_pop();
} else {
// Uncaught exception; disable the callback so it doesn't run again.
pyb_can_rxcallback(self, MP_OBJ_NEW_SMALL_INT(fifo_id), mp_const_none);
printf("uncaught exception in CAN(%u) rx interrupt handler\n", self->can_id);
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
}
gc_unlock();
}
}
2014-10-02 14:34:15 +01:00
STATIC const mp_stream_p_t can_stream_p = {
//.read = can_read, // is read sensible for CAN?
//.write = can_write, // is write sensible for CAN?
.ioctl = can_ioctl,
.is_text = false,
};
const mp_obj_type_t pyb_can_type = {
{ &mp_type_type },
.name = MP_QSTR_CAN,
.print = pyb_can_print,
.make_new = pyb_can_make_new,
.stream_p = &can_stream_p,
.locals_dict = (mp_obj_t)&pyb_can_locals_dict,
};
#endif // MICROPY_HW_ENABLE_CAN