circuitpython/atmel-samd/asf/sam0/drivers/sercom/usart/usart_interrupt.c

667 lines
21 KiB
C
Raw Normal View History

/**
* \file
*
* \brief SAM SERCOM USART Asynchronous Driver
*
* Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#include "usart_interrupt.h"
/**
* \internal
* Asynchronous write of a buffer with a given length
*
* \param[in] module Pointer to USART software instance struct
* \param[in] tx_data Pointer to data to be transmitted
* \param[in] length Length of data buffer
*
*/
enum status_code _usart_write_buffer(
struct usart_module *const module,
uint8_t *tx_data,
uint16_t length)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Assert(tx_data);
/* Get a pointer to the hardware module instance */
SercomUsart *const usart_hw = &(module->hw->USART);
system_interrupt_enter_critical_section();
/* Check if the USART transmitter is busy */
if (module->remaining_tx_buffer_length > 0) {
system_interrupt_leave_critical_section();
return STATUS_BUSY;
}
/* Write parameters to the device instance */
module->remaining_tx_buffer_length = length;
system_interrupt_leave_critical_section();
module->tx_buffer_ptr = tx_data;
module->tx_status = STATUS_BUSY;
/* Enable the Data Register Empty Interrupt */
usart_hw->INTENSET.reg = SERCOM_USART_INTFLAG_DRE;
return STATUS_OK;
}
/**
* \internal
* Asynchronous read of a buffer with a given length
*
* \param[in] module Pointer to USART software instance struct
* \param[in] rx_data Pointer to data to be received
* \param[in] length Length of data buffer
*
*/
enum status_code _usart_read_buffer(
struct usart_module *const module,
uint8_t *rx_data,
uint16_t length)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Assert(rx_data);
/* Get a pointer to the hardware module instance */
SercomUsart *const usart_hw = &(module->hw->USART);
system_interrupt_enter_critical_section();
/* Check if the USART receiver is busy */
if (module->remaining_rx_buffer_length > 0) {
system_interrupt_leave_critical_section();
return STATUS_BUSY;
}
/* Set length for the buffer and the pointer, and let
* the interrupt handler do the rest */
module->remaining_rx_buffer_length = length;
system_interrupt_leave_critical_section();
module->rx_buffer_ptr = rx_data;
module->rx_status = STATUS_BUSY;
/* Enable the RX Complete Interrupt */
usart_hw->INTENSET.reg = SERCOM_USART_INTFLAG_RXC;
#ifdef FEATURE_USART_LIN_SLAVE
/* Enable the break character is received Interrupt */
if(module->lin_slave_enabled) {
usart_hw->INTENSET.reg = SERCOM_USART_INTFLAG_RXBRK;
}
#endif
#ifdef FEATURE_USART_START_FRAME_DECTION
/* Enable a start condition is detected Interrupt */
if(module->start_frame_detection_enabled) {
usart_hw->INTENSET.reg = SERCOM_USART_INTFLAG_RXS;
}
#endif
return STATUS_OK;
}
/**
* \brief Registers a callback
*
* Registers a callback function, which is implemented by the user.
*
* \note The callback must be enabled by \ref usart_enable_callback
* in order for the interrupt handler to call it when the conditions for
* the callback type are met.
*
* \param[in] module Pointer to USART software instance struct
* \param[in] callback_func Pointer to callback function
* \param[in] callback_type Callback type given by an enum
*
*/
void usart_register_callback(
struct usart_module *const module,
usart_callback_t callback_func,
enum usart_callback callback_type)
{
/* Sanity check arguments */
Assert(module);
Assert(callback_func);
/* Register callback function */
module->callback[callback_type] = callback_func;
/* Set the bit corresponding to the callback_type */
module->callback_reg_mask |= (1 << callback_type);
}
/**
* \brief Unregisters a callback
*
* Unregisters a callback function, which is implemented by the user.
*
* \param[in,out] module Pointer to USART software instance struct
* \param[in] callback_type Callback type given by an enum
*
*/
void usart_unregister_callback(
struct usart_module *const module,
enum usart_callback callback_type)
{
/* Sanity check arguments */
Assert(module);
/* Unregister callback function */
module->callback[callback_type] = NULL;
/* Clear the bit corresponding to the callback_type */
module->callback_reg_mask &= ~(1 << callback_type);
}
/**
* \brief Asynchronous write a single char
*
* Sets up the driver to write the data given. If registered and enabled,
* a callback function will be called when the transmit is completed.
*
* \param[in] module Pointer to USART software instance struct
* \param[in] tx_data Data to transfer
*
* \returns Status of the operation.
* \retval STATUS_OK If operation was completed
* \retval STATUS_BUSY If operation was not completed, due to the
* USART module being busy
* \retval STATUS_ERR_DENIED If the transmitter is not enabled
*/
enum status_code usart_write_job(
struct usart_module *const module,
const uint16_t *tx_data)
{
/* Sanity check arguments */
Assert(module);
Assert(tx_data);
/* Check that the transmitter is enabled */
if (!(module->transmitter_enabled)) {
return STATUS_ERR_DENIED;
}
/* Call internal write buffer function with length 1 */
return _usart_write_buffer(module, (uint8_t *)tx_data, 1);
}
/**
* \brief Asynchronous read a single char
*
* Sets up the driver to read data from the USART module to the data
* pointer given. If registered and enabled, a callback will be called
* when the receiving is completed.
*
* \param[in] module Pointer to USART software instance struct
* \param[out] rx_data Pointer to where received data should be put
*
* \returns Status of the operation.
* \retval STATUS_OK If operation was completed
* \retval STATUS_BUSY If operation was not completed
*/
enum status_code usart_read_job(
struct usart_module *const module,
uint16_t *const rx_data)
{
/* Sanity check arguments */
Assert(module);
Assert(rx_data);
/* Call internal read buffer function with length 1 */
return _usart_read_buffer(module, (uint8_t *)rx_data, 1);
}
/**
* \brief Asynchronous buffer write
*
* Sets up the driver to write a given buffer over the USART. If registered and
* enabled, a callback function will be called.
*
* \param[in] module Pointer to USART software instance struct
* \param[in] tx_data Pointer do data buffer to transmit
* \param[in] length Length of the data to transmit
*
* \note If using 9-bit data, the array that *tx_data point to should be defined
* as uint16_t array and should be casted to uint8_t* pointer. Because it
* is an address pointer, the highest byte is not discarded. For example:
* \code
#define TX_LEN 3
uint16_t tx_buf[TX_LEN] = {0x0111, 0x0022, 0x0133};
usart_write_buffer_job(&module, (uint8_t*)tx_buf, TX_LEN);
\endcode
*
* \returns Status of the operation.
* \retval STATUS_OK If operation was completed successfully.
* \retval STATUS_BUSY If operation was not completed, due to the
* USART module being busy
* \retval STATUS_ERR_INVALID_ARG If operation was not completed, due to invalid
* arguments
* \retval STATUS_ERR_DENIED If the transmitter is not enabled
*/
enum status_code usart_write_buffer_job(
struct usart_module *const module,
uint8_t *tx_data,
uint16_t length)
{
/* Sanity check arguments */
Assert(module);
Assert(tx_data);
if (length == 0) {
return STATUS_ERR_INVALID_ARG;
}
/* Check that the transmitter is enabled */
if (!(module->transmitter_enabled)) {
return STATUS_ERR_DENIED;
}
/* Issue internal asynchronous write */
return _usart_write_buffer(module, tx_data, length);
}
/**
* \brief Asynchronous buffer read
*
* Sets up the driver to read from the USART to a given buffer. If registered
* and enabled, a callback function will be called.
*
* \param[in] module Pointer to USART software instance struct
* \param[out] rx_data Pointer to data buffer to receive
* \param[in] length Data buffer length
*
* \note If using 9-bit data, the array that *rx_data point to should be defined
* as uint16_t array and should be casted to uint8_t* pointer. Because it
* is an address pointer, the highest byte is not discarded. For example:
* \code
#define RX_LEN 3
uint16_t rx_buf[RX_LEN] = {0x0,};
usart_read_buffer_job(&module, (uint8_t*)rx_buf, RX_LEN);
\endcode
*
* \returns Status of the operation.
* \retval STATUS_OK If operation was completed
* \retval STATUS_BUSY If operation was not completed, due to the
* USART module being busy
* \retval STATUS_ERR_INVALID_ARG If operation was not completed, due to invalid
* arguments
* \retval STATUS_ERR_DENIED If the transmitter is not enabled
*/
enum status_code usart_read_buffer_job(
struct usart_module *const module,
uint8_t *rx_data,
uint16_t length)
{
/* Sanity check arguments */
Assert(module);
Assert(rx_data);
if (length == 0) {
return STATUS_ERR_INVALID_ARG;
}
/* Check that the receiver is enabled */
if (!(module->receiver_enabled)) {
return STATUS_ERR_DENIED;
}
/* Issue internal asynchronous read */
return _usart_read_buffer(module, rx_data, length);
}
/**
* \brief Cancels ongoing read/write operation
*
* Cancels the ongoing read/write operation modifying parameters in the
* USART software struct.
*
* \param[in] module Pointer to USART software instance struct
* \param[in] transceiver_type Transfer type to cancel
*/
void usart_abort_job(
struct usart_module *const module,
enum usart_transceiver_type transceiver_type)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
/* Get a pointer to the hardware module instance */
SercomUsart *const usart_hw = &(module->hw->USART);
switch(transceiver_type) {
case USART_TRANSCEIVER_RX:
/* Clear the interrupt flag in order to prevent the receive
* complete callback to fire */
usart_hw->INTFLAG.reg = SERCOM_USART_INTFLAG_RXC;
/* Clear the software reception buffer */
module->remaining_rx_buffer_length = 0;
break;
case USART_TRANSCEIVER_TX:
/* Clear the interrupt flag in order to prevent the receive
* complete callback to fire */
usart_hw->INTFLAG.reg = SERCOM_USART_INTFLAG_TXC;
/* Clear the software reception buffer */
module->remaining_tx_buffer_length = 0;
break;
}
}
/**
* \brief Get status from the ongoing or last asynchronous transfer operation
*
* Returns the error from a given ongoing or last asynchronous transfer operation.
* Either from a read or write transfer.
*
* \param[in] module Pointer to USART software instance struct
* \param[in] transceiver_type Transfer type to check
*
* \return Status of the given job.
* \retval STATUS_OK No error occurred during the last transfer
* \retval STATUS_BUSY A transfer is ongoing
* \retval STATUS_ERR_BAD_DATA The last operation was aborted due to a
* parity error. The transfer could be affected
* by external noise
* \retval STATUS_ERR_BAD_FORMAT The last operation was aborted due to a
* frame error
* \retval STATUS_ERR_OVERFLOW The last operation was aborted due to a
* buffer overflow
* \retval STATUS_ERR_INVALID_ARG An invalid transceiver enum given
*/
enum status_code usart_get_job_status(
struct usart_module *const module,
enum usart_transceiver_type transceiver_type)
{
/* Sanity check arguments */
Assert(module);
/* Variable for status code */
enum status_code status_code;
switch(transceiver_type) {
case USART_TRANSCEIVER_RX:
status_code = module->rx_status;
break;
case USART_TRANSCEIVER_TX:
status_code = module->tx_status;
break;
default:
status_code = STATUS_ERR_INVALID_ARG;
break;
}
return status_code;
}
/**
* \internal
* Handles interrupts as they occur, and it will run callback functions
* which are registered and enabled.
*
* \param[in] instance ID of the SERCOM instance calling the interrupt
* handler.
*/
void _usart_interrupt_handler(
uint8_t instance)
{
/* Temporary variables */
uint16_t interrupt_status;
uint16_t callback_status;
uint8_t error_code;
/* Get device instance from the look-up table */
struct usart_module *module
= (struct usart_module *)_sercom_instances[instance];
/* Pointer to the hardware module instance */
SercomUsart *const usart_hw
= &(module->hw->USART);
/* Wait for the synchronization to complete */
_usart_wait_for_sync(module);
/* Read and mask interrupt flag register */
interrupt_status = usart_hw->INTFLAG.reg;
interrupt_status &= usart_hw->INTENSET.reg;
callback_status = module->callback_reg_mask &
module->callback_enable_mask;
/* Check if a DATA READY interrupt has occurred,
* and if there is more to transfer */
if (interrupt_status & SERCOM_USART_INTFLAG_DRE) {
if (module->remaining_tx_buffer_length) {
/* Write value will be at least 8-bits long */
uint16_t data_to_send = *(module->tx_buffer_ptr);
/* Increment 8-bit pointer */
(module->tx_buffer_ptr)++;
if (module->character_size == USART_CHARACTER_SIZE_9BIT) {
data_to_send |= (*(module->tx_buffer_ptr) << 8);
/* Increment 8-bit pointer */
(module->tx_buffer_ptr)++;
}
/* Write the data to send */
usart_hw->DATA.reg = (data_to_send & SERCOM_USART_DATA_MASK);
if (--(module->remaining_tx_buffer_length) == 0) {
/* Disable the Data Register Empty Interrupt */
usart_hw->INTENCLR.reg = SERCOM_USART_INTFLAG_DRE;
/* Enable Transmission Complete interrupt */
usart_hw->INTENSET.reg = SERCOM_USART_INTFLAG_TXC;
}
} else {
usart_hw->INTENCLR.reg = SERCOM_USART_INTFLAG_DRE;
}
}
/* Check if the Transmission Complete interrupt has occurred and
* that the transmit buffer is empty */
if (interrupt_status & SERCOM_USART_INTFLAG_TXC) {
/* Disable TX Complete Interrupt, and set STATUS_OK */
usart_hw->INTENCLR.reg = SERCOM_USART_INTFLAG_TXC;
module->tx_status = STATUS_OK;
/* Run callback if registered and enabled */
if (callback_status & (1 << USART_CALLBACK_BUFFER_TRANSMITTED)) {
(*(module->callback[USART_CALLBACK_BUFFER_TRANSMITTED]))(module);
}
}
/* Check if the Receive Complete interrupt has occurred, and that
* there's more data to receive */
if (interrupt_status & SERCOM_USART_INTFLAG_RXC) {
if (module->remaining_rx_buffer_length) {
/* Read out the status code and mask away all but the 4 LSBs*/
error_code = (uint8_t)(usart_hw->STATUS.reg & SERCOM_USART_STATUS_MASK);
#if !SAMD20
/* CTS status should not be considered as an error */
if(error_code & SERCOM_USART_STATUS_CTS) {
error_code &= ~SERCOM_USART_STATUS_CTS;
}
#endif
#ifdef FEATURE_USART_LIN_MASTER
/* TXE status should not be considered as an error */
if(error_code & SERCOM_USART_STATUS_TXE) {
error_code &= ~SERCOM_USART_STATUS_TXE;
}
#endif
/* Check if an error has occurred during the receiving */
if (error_code) {
/* Check which error occurred */
if (error_code & SERCOM_USART_STATUS_FERR) {
/* Store the error code and clear flag by writing 1 to it */
module->rx_status = STATUS_ERR_BAD_FORMAT;
usart_hw->STATUS.reg = SERCOM_USART_STATUS_FERR;
} else if (error_code & SERCOM_USART_STATUS_BUFOVF) {
/* Store the error code and clear flag by writing 1 to it */
module->rx_status = STATUS_ERR_OVERFLOW;
usart_hw->STATUS.reg = SERCOM_USART_STATUS_BUFOVF;
} else if (error_code & SERCOM_USART_STATUS_PERR) {
/* Store the error code and clear flag by writing 1 to it */
module->rx_status = STATUS_ERR_BAD_DATA;
usart_hw->STATUS.reg = SERCOM_USART_STATUS_PERR;
}
#ifdef FEATURE_USART_LIN_SLAVE
else if (error_code & SERCOM_USART_STATUS_ISF) {
/* Store the error code and clear flag by writing 1 to it */
module->rx_status = STATUS_ERR_PROTOCOL;
usart_hw->STATUS.reg = SERCOM_USART_STATUS_ISF;
}
#endif
#ifdef FEATURE_USART_COLLISION_DECTION
else if (error_code & SERCOM_USART_STATUS_COLL) {
/* Store the error code and clear flag by writing 1 to it */
module->rx_status = STATUS_ERR_PACKET_COLLISION;
usart_hw->STATUS.reg = SERCOM_USART_STATUS_COLL;
}
#endif
/* Run callback if registered and enabled */
if (callback_status
& (1 << USART_CALLBACK_ERROR)) {
(*(module->callback[USART_CALLBACK_ERROR]))(module);
}
} else {
/* Read current packet from DATA register,
* increment buffer pointer and decrement buffer length */
uint16_t received_data = (usart_hw->DATA.reg & SERCOM_USART_DATA_MASK);
/* Read value will be at least 8-bits long */
*(module->rx_buffer_ptr) = received_data;
/* Increment 8-bit pointer */
module->rx_buffer_ptr += 1;
if (module->character_size == USART_CHARACTER_SIZE_9BIT) {
/* 9-bit data, write next received byte to the buffer */
*(module->rx_buffer_ptr) = (received_data >> 8);
/* Increment 8-bit pointer */
module->rx_buffer_ptr += 1;
}
/* Check if the last character have been received */
if(--(module->remaining_rx_buffer_length) == 0) {
/* Disable RX Complete Interrupt,
* and set STATUS_OK */
usart_hw->INTENCLR.reg = SERCOM_USART_INTFLAG_RXC;
module->rx_status = STATUS_OK;
/* Run callback if registered and enabled */
if (callback_status
& (1 << USART_CALLBACK_BUFFER_RECEIVED)) {
(*(module->callback[USART_CALLBACK_BUFFER_RECEIVED]))(module);
}
}
}
} else {
/* This should not happen. Disable Receive Complete interrupt. */
usart_hw->INTENCLR.reg = SERCOM_USART_INTFLAG_RXC;
}
}
#ifdef FEATURE_USART_HARDWARE_FLOW_CONTROL
if (interrupt_status & SERCOM_USART_INTFLAG_CTSIC) {
/* Disable interrupts */
usart_hw->INTENCLR.reg = SERCOM_USART_INTENCLR_CTSIC;
/* Clear interrupt flag */
usart_hw->INTFLAG.reg = SERCOM_USART_INTFLAG_CTSIC;
/* Run callback if registered and enabled */
if (callback_status & (1 << USART_CALLBACK_CTS_INPUT_CHANGE)) {
(*(module->callback[USART_CALLBACK_CTS_INPUT_CHANGE]))(module);
}
}
#endif
#ifdef FEATURE_USART_LIN_SLAVE
if (interrupt_status & SERCOM_USART_INTFLAG_RXBRK) {
/* Disable interrupts */
usart_hw->INTENCLR.reg = SERCOM_USART_INTENCLR_RXBRK;
/* Clear interrupt flag */
usart_hw->INTFLAG.reg = SERCOM_USART_INTFLAG_RXBRK;
/* Run callback if registered and enabled */
if (callback_status & (1 << USART_CALLBACK_BREAK_RECEIVED)) {
(*(module->callback[USART_CALLBACK_BREAK_RECEIVED]))(module);
}
}
#endif
#ifdef FEATURE_USART_START_FRAME_DECTION
if (interrupt_status & SERCOM_USART_INTFLAG_RXS) {
/* Disable interrupts */
usart_hw->INTENCLR.reg = SERCOM_USART_INTENCLR_RXS;
/* Clear interrupt flag */
usart_hw->INTFLAG.reg = SERCOM_USART_INTFLAG_RXS;
/* Run callback if registered and enabled */
if (callback_status & (1 << USART_CALLBACK_START_RECEIVED)) {
(*(module->callback[USART_CALLBACK_START_RECEIVED]))(module);
}
}
#endif
}