circuitpython/stmhal/usb.c

720 lines
24 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014, 2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdarg.h>
#include <string.h>
#include "usbd_core.h"
#include "usbd_desc.h"
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"
#include "usbd_msc_storage.h"
#include "usbd_hid_interface.h"
#include "py/objstr.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "bufhelper.h"
#include "usb.h"
#if defined(USE_USB_FS)
#define USB_PHY_ID USB_PHY_FS_ID
#elif defined(USE_USB_HS) && defined(USE_USB_HS_IN_FS)
#define USB_PHY_ID USB_PHY_HS_ID
#else
#error Unable to determine proper USB_PHY_ID to use
#endif
// this will be persistent across a soft-reset
mp_uint_t pyb_usb_flags = 0;
#ifdef USE_DEVICE_MODE
USBD_HandleTypeDef hUSBDDevice;
pyb_usb_storage_medium_t pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_NONE;
#endif
// predefined hid mouse data
STATIC const mp_obj_str_t pyb_usb_hid_mouse_desc_obj = {
{&mp_type_bytes},
0, // hash not valid
USBD_HID_MOUSE_REPORT_DESC_SIZE,
USBD_HID_MOUSE_ReportDesc,
};
const mp_obj_tuple_t pyb_usb_hid_mouse_obj = {
{&mp_type_tuple},
5,
{
MP_OBJ_NEW_SMALL_INT(1), // subclass: boot
MP_OBJ_NEW_SMALL_INT(2), // protocol: mouse
MP_OBJ_NEW_SMALL_INT(USBD_HID_MOUSE_MAX_PACKET),
MP_OBJ_NEW_SMALL_INT(8), // polling interval: 8ms
(mp_obj_t)&pyb_usb_hid_mouse_desc_obj,
},
};
// predefined hid keyboard data
STATIC const mp_obj_str_t pyb_usb_hid_keyboard_desc_obj = {
{&mp_type_bytes},
0, // hash not valid
USBD_HID_KEYBOARD_REPORT_DESC_SIZE,
USBD_HID_KEYBOARD_ReportDesc,
};
const mp_obj_tuple_t pyb_usb_hid_keyboard_obj = {
{&mp_type_tuple},
5,
{
MP_OBJ_NEW_SMALL_INT(1), // subclass: boot
MP_OBJ_NEW_SMALL_INT(1), // protocol: keyboard
MP_OBJ_NEW_SMALL_INT(USBD_HID_KEYBOARD_MAX_PACKET),
MP_OBJ_NEW_SMALL_INT(8), // polling interval: 8ms
(mp_obj_t)&pyb_usb_hid_keyboard_desc_obj,
},
};
void pyb_usb_init0(void) {
mp_hal_set_interrupt_char(-1);
MP_STATE_PORT(pyb_hid_report_desc) = MP_OBJ_NULL;
}
bool pyb_usb_dev_init(uint16_t vid, uint16_t pid, usb_device_mode_t mode, USBD_HID_ModeInfoTypeDef *hid_info) {
#ifdef USE_DEVICE_MODE
if (!(pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED)) {
// only init USB once in the device's power-lifetime
USBD_SetVIDPIDRelease(vid, pid, 0x0200, mode == USBD_MODE_CDC);
if (USBD_SelectMode(mode, hid_info) != 0) {
return false;
}
USBD_Init(&hUSBDDevice, (USBD_DescriptorsTypeDef*)&USBD_Descriptors, USB_PHY_ID);
USBD_RegisterClass(&hUSBDDevice, &USBD_CDC_MSC_HID);
USBD_CDC_RegisterInterface(&hUSBDDevice, (USBD_CDC_ItfTypeDef*)&USBD_CDC_fops);
switch (pyb_usb_storage_medium) {
#if MICROPY_HW_HAS_SDCARD
case PYB_USB_STORAGE_MEDIUM_SDCARD:
USBD_MSC_RegisterStorage(&hUSBDDevice, (USBD_StorageTypeDef*)&USBD_SDCARD_STORAGE_fops);
break;
#endif
default:
USBD_MSC_RegisterStorage(&hUSBDDevice, (USBD_StorageTypeDef*)&USBD_FLASH_STORAGE_fops);
break;
}
USBD_HID_RegisterInterface(&hUSBDDevice, (USBD_HID_ItfTypeDef*)&USBD_HID_fops);
USBD_Start(&hUSBDDevice);
}
pyb_usb_flags |= PYB_USB_FLAG_DEV_ENABLED;
#endif
return true;
}
void pyb_usb_dev_deinit(void) {
if (pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED) {
USBD_Stop(&hUSBDDevice);
pyb_usb_flags &= ~PYB_USB_FLAG_DEV_ENABLED;
}
}
bool usb_vcp_is_enabled(void) {
return (pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED) != 0;
}
int usb_vcp_recv_byte(uint8_t *c) {
return USBD_CDC_Rx(c, 1, 0);
}
void usb_vcp_send_strn(const char *str, int len) {
#ifdef USE_DEVICE_MODE
if (pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED) {
USBD_CDC_TxAlways((const uint8_t*)str, len);
}
#endif
}
void usb_vcp_send_strn_cooked(const char *str, int len) {
#ifdef USE_DEVICE_MODE
if (pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED) {
for (const char *top = str + len; str < top; str++) {
if (*str == '\n') {
USBD_CDC_TxAlways((const uint8_t*)"\r\n", 2);
} else {
USBD_CDC_TxAlways((const uint8_t*)str, 1);
}
}
}
#endif
}
/******************************************************************************/
// Micro Python bindings for USB
/*
Philosophy of USB driver and Python API: pyb.usb_mode(...) configures the USB
on the board. The USB itself is not an entity, rather the interfaces are, and
can be accessed by creating objects, such as pyb.USB_VCP() and pyb.USB_HID().
We have:
pyb.usb_mode() # return the current usb mode
pyb.usb_mode(None) # disable USB
pyb.usb_mode('VCP') # enable with VCP interface
pyb.usb_mode('VCP+MSC') # enable with VCP and MSC interfaces
pyb.usb_mode('VCP+HID') # enable with VCP and HID, defaulting to mouse protocol
pyb.usb_mode('VCP+HID', vid=0xf055, pid=0x9800) # specify VID and PID
pyb.usb_mode('VCP+HID', hid=pyb.hid_mouse)
pyb.usb_mode('VCP+HID', hid=pyb.hid_keyboard)
pyb.usb_mode('VCP+HID', pid=0x1234, hid=(subclass, protocol, max_packet_len, polling_interval, report_desc))
vcp = pyb.USB_VCP() # get the VCP device for read/write
hid = pyb.USB_HID() # get the HID device for write/poll
Possible extensions:
pyb.usb_mode('host', ...)
pyb.usb_mode('OTG', ...)
pyb.usb_mode(..., port=2) # for second USB port
*/
STATIC mp_obj_t pyb_usb_mode(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_vid, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = USBD_VID} },
{ MP_QSTR_pid, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_hid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = (mp_obj_t)&pyb_usb_hid_mouse_obj} },
};
// fetch the current usb mode -> pyb.usb_mode()
if (n_args == 0) {
#if defined(USE_HOST_MODE)
return MP_OBJ_NEW_QSTR(MP_QSTR_host);
#elif defined(USE_DEVICE_MODE)
uint8_t mode = USBD_GetMode();
switch (mode) {
case USBD_MODE_CDC:
return MP_OBJ_NEW_QSTR(MP_QSTR_VCP);
case USBD_MODE_MSC:
return MP_OBJ_NEW_QSTR(MP_QSTR_MSC);
case USBD_MODE_HID:
return MP_OBJ_NEW_QSTR(MP_QSTR_HID);
case USBD_MODE_CDC_MSC:
return MP_OBJ_NEW_QSTR(MP_QSTR_VCP_plus_MSC);
case USBD_MODE_CDC_HID:
return MP_OBJ_NEW_QSTR(MP_QSTR_VCP_plus_HID);
case USBD_MODE_MSC_HID:
return MP_OBJ_NEW_QSTR(MP_QSTR_MSC_plus_HID);
default:
return mp_const_none;
}
#endif
}
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// record the fact that the usb has been explicitly configured
pyb_usb_flags |= PYB_USB_FLAG_USB_MODE_CALLED;
// check if user wants to disable the USB
if (args[0].u_obj == mp_const_none) {
// disable usb
#if defined(USE_DEVICE_MODE)
pyb_usb_dev_deinit();
#endif
return mp_const_none;
}
// get mode string
const char *mode_str = mp_obj_str_get_str(args[0].u_obj);
#if defined(USE_HOST_MODE)
// hardware configured for USB host mode
if (strcmp(mode_str, "host") == 0) {
pyb_usb_host_init();
} else {
goto bad_mode;
}
#elif defined(USE_DEVICE_MODE)
// hardware configured for USB device mode
// get the VID, PID and USB mode
// note: PID=-1 means select PID based on mode
// note: we support CDC as a synonym for VCP for backward compatibility
uint16_t vid = args[1].u_int;
uint16_t pid = args[2].u_int;
usb_device_mode_t mode;
if (strcmp(mode_str, "CDC+MSC") == 0 || strcmp(mode_str, "VCP+MSC") == 0) {
if (args[2].u_int == -1) {
pid = USBD_PID_CDC_MSC;
}
mode = USBD_MODE_CDC_MSC;
} else if (strcmp(mode_str, "CDC+HID") == 0 || strcmp(mode_str, "VCP+HID") == 0) {
if (args[2].u_int == -1) {
pid = USBD_PID_CDC_HID;
}
mode = USBD_MODE_CDC_HID;
} else if (strcmp(mode_str, "CDC") == 0 || strcmp(mode_str, "VCP") == 0) {
if (args[2].u_int == -1) {
pid = USBD_PID_CDC;
}
mode = USBD_MODE_CDC;
} else {
goto bad_mode;
}
// get hid info if user selected such a mode
USBD_HID_ModeInfoTypeDef hid_info;
if (mode & USBD_MODE_HID) {
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[3].u_obj, 5, &items);
hid_info.subclass = mp_obj_get_int(items[0]);
hid_info.protocol = mp_obj_get_int(items[1]);
hid_info.max_packet_len = mp_obj_get_int(items[2]);
hid_info.polling_interval = mp_obj_get_int(items[3]);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(items[4], &bufinfo, MP_BUFFER_READ);
hid_info.report_desc = bufinfo.buf;
hid_info.report_desc_len = bufinfo.len;
// need to keep a copy of this so report_desc does not get GC'd
MP_STATE_PORT(pyb_hid_report_desc) = items[4];
}
// init the USB device
if (!pyb_usb_dev_init(vid, pid, mode, &hid_info)) {
goto bad_mode;
}
#else
// hardware not configured for USB
goto bad_mode;
#endif
return mp_const_none;
bad_mode:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "bad USB mode"));
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_mode_obj, 0, pyb_usb_mode);
/******************************************************************************/
// Micro Python bindings for USB VCP
/// \moduleref pyb
/// \class USB_VCP - USB virtual comm port
///
/// The USB_VCP class allows creation of an object representing the USB
/// virtual comm port. It can be used to read and write data over USB to
/// the connected host.
typedef struct _pyb_usb_vcp_obj_t {
mp_obj_base_t base;
} pyb_usb_vcp_obj_t;
STATIC const pyb_usb_vcp_obj_t pyb_usb_vcp_obj = {{&pyb_usb_vcp_type}};
STATIC void pyb_usb_vcp_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
mp_print_str(print, "USB_VCP()");
}
/// \classmethod \constructor()
/// Create a new USB_VCP object.
STATIC mp_obj_t pyb_usb_vcp_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// TODO raise exception if USB is not configured for VCP
// return the USB VCP object
return (mp_obj_t)&pyb_usb_vcp_obj;
}
STATIC mp_obj_t pyb_usb_vcp_setinterrupt(mp_obj_t self_in, mp_obj_t int_chr_in) {
mp_hal_set_interrupt_char(mp_obj_get_int(int_chr_in));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_usb_vcp_setinterrupt_obj, pyb_usb_vcp_setinterrupt);
STATIC mp_obj_t pyb_usb_vcp_isconnected(mp_obj_t self_in) {
return mp_obj_new_bool(USBD_CDC_IsConnected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_vcp_isconnected_obj, pyb_usb_vcp_isconnected);
// deprecated in favour of USB_VCP.isconnected
STATIC mp_obj_t pyb_have_cdc(void) {
return pyb_usb_vcp_isconnected(MP_OBJ_NULL);
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);
/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_usb_vcp_any(mp_obj_t self_in) {
if (USBD_CDC_RxNum() > 0) {
return mp_const_true;
} else {
return mp_const_false;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_vcp_any_obj, pyb_usb_vcp_any);
/// \method send(data, *, timeout=5000)
/// Send data over the USB VCP:
///
/// - `data` is the data to send (an integer to send, or a buffer object).
/// - `timeout` is the timeout in milliseconds to wait for the send.
///
/// Return value: number of bytes sent.
STATIC const mp_arg_t pyb_usb_vcp_send_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_USB_VCP_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_usb_vcp_send_args)
STATIC mp_obj_t pyb_usb_vcp_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t vals[PYB_USB_VCP_SEND_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_USB_VCP_SEND_NUM_ARGS, pyb_usb_vcp_send_args, vals);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
// send the data
int ret = USBD_CDC_Tx(bufinfo.buf, bufinfo.len, vals[1].u_int);
return mp_obj_new_int(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_send_obj, 1, pyb_usb_vcp_send);
/// \method recv(data, *, timeout=5000)
///
/// Receive data on the bus:
///
/// - `data` can be an integer, which is the number of bytes to receive,
/// or a mutable buffer, which will be filled with received bytes.
/// - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: if `data` is an integer then a new buffer of the bytes received,
/// otherwise the number of bytes read into `data` is returned.
STATIC mp_obj_t pyb_usb_vcp_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t vals[PYB_USB_VCP_SEND_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_USB_VCP_SEND_NUM_ARGS, pyb_usb_vcp_send_args, vals);
// get the buffer to receive into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr);
// receive the data
int ret = USBD_CDC_Rx((uint8_t*)vstr.buf, vstr.len, vals[1].u_int);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return mp_obj_new_int(ret); // number of bytes read into given buffer
} else {
vstr.len = ret; // set actual number of bytes read
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); // create a new buffer
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_recv_obj, 1, pyb_usb_vcp_recv);
mp_obj_t pyb_usb_vcp___exit__(mp_uint_t n_args, const mp_obj_t *args) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_usb_vcp___exit___obj, 4, 4, pyb_usb_vcp___exit__);
STATIC const mp_map_elem_t pyb_usb_vcp_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_setinterrupt), (mp_obj_t)&pyb_usb_vcp_setinterrupt_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isconnected), (mp_obj_t)&pyb_usb_vcp_isconnected_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_usb_vcp_any_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_usb_vcp_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_usb_vcp_recv_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_readlines), (mp_obj_t)&mp_stream_unbuffered_readlines_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&mp_identity_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&mp_identity_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR___enter__), (mp_obj_t)&mp_identity_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR___exit__), (mp_obj_t)&pyb_usb_vcp___exit___obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_usb_vcp_locals_dict, pyb_usb_vcp_locals_dict_table);
STATIC mp_uint_t pyb_usb_vcp_read(mp_obj_t self_in, void *buf, mp_uint_t size, int *errcode) {
int ret = USBD_CDC_Rx((byte*)buf, size, 0);
if (ret == 0) {
// return EAGAIN error to indicate non-blocking
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
return ret;
}
STATIC mp_uint_t pyb_usb_vcp_write(mp_obj_t self_in, const void *buf, mp_uint_t size, int *errcode) {
int ret = USBD_CDC_Tx((const byte*)buf, size, 0);
if (ret == 0) {
// return EAGAIN error to indicate non-blocking
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
return ret;
}
STATIC mp_uint_t pyb_usb_vcp_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
mp_uint_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && USBD_CDC_RxNum() > 0) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && USBD_CDC_TxHalfEmpty()) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t pyb_usb_vcp_stream_p = {
.read = pyb_usb_vcp_read,
.write = pyb_usb_vcp_write,
.ioctl = pyb_usb_vcp_ioctl,
};
const mp_obj_type_t pyb_usb_vcp_type = {
{ &mp_type_type },
.name = MP_QSTR_USB_VCP,
.print = pyb_usb_vcp_print,
.make_new = pyb_usb_vcp_make_new,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &pyb_usb_vcp_stream_p,
.locals_dict = (mp_obj_t)&pyb_usb_vcp_locals_dict,
};
/******************************************************************************/
// Micro Python bindings for USB HID
typedef struct _pyb_usb_hid_obj_t {
mp_obj_base_t base;
} pyb_usb_hid_obj_t;
STATIC const pyb_usb_hid_obj_t pyb_usb_hid_obj = {{&pyb_usb_hid_type}};
STATIC mp_obj_t pyb_usb_hid_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// TODO raise exception if USB is not configured for HID
// return the USB HID object
return (mp_obj_t)&pyb_usb_hid_obj;
}
/// \method recv(data, *, timeout=5000)
///
/// Receive data on the bus:
///
/// - `data` can be an integer, which is the number of bytes to receive,
/// or a mutable buffer, which will be filled with received bytes.
/// - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: if `data` is an integer then a new buffer of the bytes received,
/// otherwise the number of bytes read into `data` is returned.
STATIC mp_obj_t pyb_usb_hid_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
mp_arg_val_t vals[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, vals);
// get the buffer to receive into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr);
// receive the data
int ret = USBD_HID_Rx((uint8_t*)vstr.buf, vstr.len, vals[1].u_int);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return mp_obj_new_int(ret); // number of bytes read into given buffer
} else {
vstr.len = ret; // set actual number of bytes read
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); // create a new buffer
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_hid_recv_obj, 1, pyb_usb_hid_recv);
STATIC mp_obj_t pyb_usb_hid_send(mp_obj_t self_in, mp_obj_t report_in) {
#ifdef USE_DEVICE_MODE
mp_buffer_info_t bufinfo;
byte temp_buf[8];
// get the buffer to send from
// we accept either a byte array, or a tuple/list of integers
if (!mp_get_buffer(report_in, &bufinfo, MP_BUFFER_READ)) {
mp_obj_t *items;
mp_obj_get_array(report_in, &bufinfo.len, &items);
if (bufinfo.len > sizeof(temp_buf)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "tuple/list too large for HID report; use bytearray instead"));
}
for (int i = 0; i < bufinfo.len; i++) {
temp_buf[i] = mp_obj_get_int(items[i]);
}
bufinfo.buf = temp_buf;
}
// send the data
if (USBD_OK == USBD_HID_SendReport(&hUSBDDevice, bufinfo.buf, bufinfo.len)) {
return mp_obj_new_int(bufinfo.len);
} else {
return mp_obj_new_int(0);
}
#endif
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_usb_hid_send_obj, pyb_usb_hid_send);
// deprecated in favour of USB_HID.send
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
return pyb_usb_hid_send(MP_OBJ_NULL, arg);
}
MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
STATIC const mp_map_elem_t pyb_usb_hid_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_usb_hid_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_usb_hid_recv_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_usb_hid_locals_dict, pyb_usb_hid_locals_dict_table);
STATIC mp_uint_t pyb_usb_hid_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
mp_uint_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && USBD_HID_RxNum() > 0) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && USBD_HID_CanSendReport(&hUSBDDevice)) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t pyb_usb_hid_stream_p = {
.ioctl = pyb_usb_hid_ioctl,
};
const mp_obj_type_t pyb_usb_hid_type = {
{ &mp_type_type },
.name = MP_QSTR_USB_HID,
.make_new = pyb_usb_hid_make_new,
.protocol = &pyb_usb_hid_stream_p,
.locals_dict = (mp_obj_t)&pyb_usb_hid_locals_dict,
};
/******************************************************************************/
// code for experimental USB OTG support
#ifdef USE_HOST_MODE
#include "led.h"
#include "usbh_core.h"
#include "usbh_usr.h"
#include "usbh_hid_core.h"
#include "usbh_hid_keybd.h"
#include "usbh_hid_mouse.h"
__ALIGN_BEGIN USBH_HOST USB_Host __ALIGN_END ;
static int host_is_enabled = 0;
void pyb_usb_host_init(void) {
if (!host_is_enabled) {
// only init USBH once in the device's power-lifetime
/* Init Host Library */
USBH_Init(&USB_OTG_Core, USB_OTG_FS_CORE_ID, &USB_Host, &HID_cb, &USR_Callbacks);
}
host_is_enabled = 1;
}
void pyb_usb_host_process(void) {
USBH_Process(&USB_OTG_Core, &USB_Host);
}
uint8_t usb_keyboard_key = 0;
// TODO this is an ugly hack to get key presses
uint pyb_usb_host_get_keyboard(void) {
uint key = usb_keyboard_key;
usb_keyboard_key = 0;
return key;
}
void USR_MOUSE_Init(void) {
led_state(4, 1);
USB_OTG_BSP_mDelay(100);
led_state(4, 0);
}
void USR_MOUSE_ProcessData(HID_MOUSE_Data_TypeDef *data) {
led_state(4, 1);
USB_OTG_BSP_mDelay(50);
led_state(4, 0);
}
void USR_KEYBRD_Init(void) {
led_state(4, 1);
USB_OTG_BSP_mDelay(100);
led_state(4, 0);
}
void USR_KEYBRD_ProcessData(uint8_t pbuf) {
led_state(4, 1);
USB_OTG_BSP_mDelay(50);
led_state(4, 0);
usb_keyboard_key = pbuf;
}
#endif // USE_HOST_MODE