circuitpython/ports/stm32f4/common-hal/busio/UART.c

443 lines
14 KiB
C
Raw Normal View History

2019-07-31 14:58:55 -04:00
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/UART.h"
#include "mpconfigport.h"
#include "lib/utils/interrupt_char.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "supervisor/shared/translate.h"
#include "tick.h"
2019-10-11 15:47:55 -04:00
#include "stm32f4xx_hal.h"
2019-07-31 14:58:55 -04:00
2019-10-04 14:37:18 -04:00
STATIC bool reserved_uart[10];
void uart_reset(void) {
#ifdef USART1
reserved_uart[0] = false;
__HAL_RCC_USART1_CLK_DISABLE();
#endif
#ifdef USART2
reserved_uart[1] = false;
__HAL_RCC_USART2_CLK_DISABLE();
#endif
#ifdef USART3
reserved_uart[2] = false;
__HAL_RCC_USART3_CLK_DISABLE();
#endif
#ifdef UART4
reserved_uart[3] = false;
__HAL_RCC_UART4_CLK_DISABLE();
#endif
#ifdef UART5
reserved_uart[4] = false;
__HAL_RCC_UART5_CLK_DISABLE();
#endif
#ifdef USART6
reserved_uart[5] = false;
__HAL_RCC_USART6_CLK_DISABLE();
#endif
2019-10-11 15:47:55 -04:00
//TODO: this technically needs to go to 10 to support F413. Any way to condense?
2019-10-04 14:37:18 -04:00
}
2019-07-31 14:58:55 -04:00
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate,
uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout,
2019-08-07 18:12:13 -04:00
uint16_t receiver_buffer_size) {
2019-10-04 11:42:38 -04:00
2019-10-04 14:37:18 -04:00
//match pins to UART objects
USART_TypeDef * USARTx;
uint8_t tx_len = sizeof(mcu_uart_tx_list)/sizeof(*mcu_uart_tx_list);
uint8_t rx_len = sizeof(mcu_uart_rx_list)/sizeof(*mcu_uart_rx_list);
bool uart_taken = false;
2019-10-11 15:47:55 -04:00
//Can have both pins, or either
//TODO: condense in some elegant clever way that I can't currently think of
if ((tx != mp_const_none) && (rx != mp_const_none)) {
//normal find loop if both pins exist
for(uint i=0; i<tx_len;i++) {
if (mcu_uart_tx_list[i].pin == tx) {
//rx
for(uint j=0; j<rx_len;j++) {
if (mcu_uart_rx_list[j].pin == rx
&& mcu_uart_rx_list[j].uart_index == mcu_uart_tx_list[i].uart_index) {
//keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_tx_list[i].uart_index-1]) {
uart_taken = true;
continue;
}
//store pins if not
self->tx = &mcu_uart_tx_list[i];
self->rx = &mcu_uart_rx_list[j];
break;
2019-10-04 14:37:18 -04:00
}
}
}
}
2019-10-11 15:47:55 -04:00
//handle typedef selection, errors
if(self->tx!=NULL && self->rx!=NULL) {
USARTx = mcu_uart_banks[self->tx->uart_index-1];
mp_printf(&mp_plat_print, "UART:%d \n", self->tx->uart_index);
2019-10-16 11:33:55 -04:00
//assign a root pointer pointer for IRQ
MP_STATE_PORT(cpy_uart_obj_all)[self->tx->uart_index-1] = self;
2019-10-11 15:47:55 -04:00
} else {
if (uart_taken) {
mp_raise_ValueError(translate("Hardware busy, try alternative pins"));
} else {
mp_raise_ValueError(translate("Invalid UART pin selection"));
}
}
} else if (tx==mp_const_none) {
//run only rx
for(uint i=0; i<rx_len;i++) {
if (mcu_uart_rx_list[i].pin == rx) {
//keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_rx_list[i].uart_index-1]) {
uart_taken = true;
continue;
}
//store pins if not
self->rx = &mcu_uart_rx_list[i];
break;
}
}
//handle typedef selection, errors
if(self->rx!=NULL) {
USARTx = mcu_uart_banks[self->rx->uart_index-1];
2019-10-16 11:33:55 -04:00
//assign a root pointer pointer for IRQ
MP_STATE_PORT(cpy_uart_obj_all)[self->rx->uart_index-1] = self;
2019-10-11 15:47:55 -04:00
} else {
if (uart_taken) {
mp_raise_ValueError(translate("Hardware busy, try alternative pins"));
} else {
mp_raise_ValueError(translate("Invalid UART pin selection"));
}
}
} else if (rx==mp_const_none) {
//run only tx
for(uint i=0; i<tx_len;i++) {
if (mcu_uart_tx_list[i].pin == tx) {
//keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_tx_list[i].uart_index-1]) {
uart_taken = true;
continue;
}
//store pins if not
self->tx = &mcu_uart_tx_list[i];
break;
}
}
//handle typedef selection, errors
if(self->tx!=NULL) {
USARTx = mcu_uart_banks[self->tx->uart_index-1];
2019-10-16 11:33:55 -04:00
//assign a root pointer pointer for IRQ
MP_STATE_PORT(cpy_uart_obj_all)[self->tx->uart_index-1] = self;
2019-10-04 14:37:18 -04:00
} else {
2019-10-11 15:47:55 -04:00
if (uart_taken) {
mp_raise_ValueError(translate("Hardware busy, try alternative pins"));
} else {
mp_raise_ValueError(translate("Invalid UART pin selection"));
}
2019-10-04 14:37:18 -04:00
}
2019-10-11 15:47:55 -04:00
} else {
//both pins cannot be empty
mp_raise_ValueError(translate("You must supply at least one UART pin"));
}
//Other errors
if ( receiver_buffer_size == 0 ) {
mp_raise_ValueError(translate("Invalid buffer size"));
}
if ( bits != 8 && bits != 9 ) {
mp_raise_ValueError(translate("Invalid word/bit length"));
2019-10-04 14:37:18 -04:00
}
2019-10-11 15:47:55 -04:00
//GPIO Init
2019-10-04 14:37:18 -04:00
GPIO_InitTypeDef GPIO_InitStruct = {0};
2019-10-11 15:47:55 -04:00
if (self->tx!=NULL) {
GPIO_InitStruct.Pin = pin_mask(tx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = self->tx->altfn_index;
HAL_GPIO_Init(pin_port(tx->port), &GPIO_InitStruct);
}
if (self->rx!=NULL) {
GPIO_InitStruct.Pin = pin_mask(rx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = self->rx->altfn_index;
HAL_GPIO_Init(pin_port(rx->port), &GPIO_InitStruct);
}
2019-10-04 14:37:18 -04:00
#ifdef USART1
if(USARTx==USART1) {
reserved_uart[0] = true;
__HAL_RCC_USART1_CLK_ENABLE();
2019-10-16 11:33:55 -04:00
HAL_NVIC_SetPriority(USART1_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(USART1_IRQn);
2019-10-04 14:37:18 -04:00
}
#endif
#ifdef UART2
if(USARTx==USART2) {
reserved_uart[1] = true;
__HAL_RCC_USART2_CLK_ENABLE();
2019-10-16 11:33:55 -04:00
HAL_NVIC_SetPriority(USART2_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(USART2_IRQn);
2019-10-04 14:37:18 -04:00
}
#endif
#ifdef USART3
if(USARTx==USART3) {
reserved_uart[2] = true;
__HAL_RCC_USART3_CLK_ENABLE();
2019-10-16 11:33:55 -04:00
HAL_NVIC_SetPriority(USART3_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(USART3_IRQn);
2019-10-04 14:37:18 -04:00
}
#endif
#ifdef UART4
if(USARTx==UART4) {
reserved_uart[3] = true;
__HAL_RCC_UART4_CLK_ENABLE();
2019-10-16 11:33:55 -04:00
HAL_NVIC_SetPriority(UART4_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(UART4_IRQn);
2019-10-04 14:37:18 -04:00
}
#endif
#ifdef UART5
if(USARTx==UART5) {
reserved_uart[4] = true;
__HAL_RCC_UART5_CLK_ENABLE();
}
#endif
#ifdef USART6
if(USARTx==USART6) {
reserved_uart[5] = true;
__HAL_RCC_USART6_CLK_ENABLE();
}
#endif
2019-10-11 15:47:55 -04:00
//TODO: this technically needs to go to 10 to support F413. Condense?
2019-10-04 14:37:18 -04:00
self->handle.Instance = USARTx;
2019-10-11 15:47:55 -04:00
self->handle.Init.BaudRate = baudrate;
self->handle.Init.WordLength = (bits == 9) ? UART_WORDLENGTH_9B : UART_WORDLENGTH_8B;
self->handle.Init.StopBits = (stop>1) ? UART_STOPBITS_2 : UART_STOPBITS_1;
self->handle.Init.Parity = (parity==PARITY_ODD) ? UART_PARITY_ODD :
(parity==PARITY_EVEN) ? UART_PARITY_EVEN :
UART_PARITY_NONE;
self->handle.Init.Mode = (self->tx != NULL && self->rx != NULL) ? UART_MODE_TX_RX :
(self->tx != NULL) ? UART_MODE_TX :
UART_MODE_RX;
2019-10-04 14:37:18 -04:00
self->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
self->handle.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&self->handle) != HAL_OK)
2019-10-04 11:42:38 -04:00
{
2019-10-04 14:37:18 -04:00
mp_raise_ValueError(translate("UART Init Error"));
2019-10-04 11:42:38 -04:00
}
2019-10-08 16:03:51 -04:00
2019-10-11 15:47:55 -04:00
// Init buffer for rx and claim pins
if (self->rx != NULL) {
ringbuf_alloc(&self->rbuf, receiver_buffer_size, true);
if (!self->rbuf.buf) {
mp_raise_ValueError(translate("UART Buffer allocation error"));
}
claim_pin(rx);
}
if (self->tx != NULL) {
claim_pin(tx);
}
self->baudrate = baudrate;
self->timeout_ms = timeout * 1000;
if (HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1) != HAL_OK) {
mp_raise_ValueError(translate("HAL recieve IT start error"));
}
2019-10-16 11:33:55 -04:00
//__HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE);
2019-07-31 14:58:55 -04:00
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
2019-10-08 16:03:51 -04:00
return self->tx->pin == mp_const_none;
2019-07-31 14:58:55 -04:00
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
2019-10-08 16:03:51 -04:00
reset_pin_number(self->tx->pin->port,self->tx->pin->number);
reset_pin_number(self->rx->pin->port,self->rx->pin->number);
self->tx = mp_const_none;
self->rx = mp_const_none;
2019-07-31 14:58:55 -04:00
}
// Read characters.
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
2019-10-11 15:47:55 -04:00
// if ( nrf_uarte_rx_pin_get(self->uarte->p_reg) == NRF_UARTE_PSEL_DISCONNECTED ) {
// mp_raise_ValueError(translate("No RX pin"));
// }
size_t rx_bytes = 0;
uint64_t start_ticks = ticks_ms;
// Wait for all bytes received or timeout, same as nrf
while ( (ringbuf_count(&self->rbuf) < len) && (ticks_ms - start_ticks < self->timeout_ms) ) {
RUN_BACKGROUND_TASKS;
// Allow user to break out of a timeout with a KeyboardInterrupt.
if ( mp_hal_is_interrupted() ) {
return 0;
2019-10-08 16:03:51 -04:00
}
2019-10-04 14:37:18 -04:00
}
2019-10-08 16:03:51 -04:00
2019-10-11 15:47:55 -04:00
// Halt reception
HAL_UART_AbortReceive_IT(&self->handle);
// copy received data
rx_bytes = ringbuf_count(&self->rbuf);
rx_bytes = MIN(rx_bytes, len);
for ( uint16_t i = 0; i < rx_bytes; i++ ) {
data[i] = ringbuf_get(&self->rbuf);
}
if (HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1) != HAL_OK) {
mp_raise_ValueError(translate("HAL recieve IT start error"));
}
if (rx_bytes == 0) {
2019-10-08 16:03:51 -04:00
*errcode = EAGAIN;
return MP_STREAM_ERROR;
}
2019-10-11 15:47:55 -04:00
return rx_bytes;
2019-07-31 14:58:55 -04:00
}
// Write characters.
size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
2019-10-04 14:37:18 -04:00
if (HAL_UART_Transmit(&self->handle, (uint8_t *)data, len, 500) == HAL_OK) {
return len;
} else {
mp_raise_ValueError(translate("UART write error"));
}
2019-08-15 15:12:50 -04:00
return 0;
2019-07-31 14:58:55 -04:00
}
2019-10-11 15:47:55 -04:00
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *handle)
{
//not used at the moment.
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *handle)
{
for(int i=0; i<7; i++) {
2019-10-16 11:33:55 -04:00
//get context pointer and cast it as struct pointer
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i];
if(handle == &context->handle) {
ringbuf_put_n(&context->rbuf, &context->rx_char, 1);
HAL_UART_Receive_IT(handle, &context->rx_char, 1);
2019-10-11 15:47:55 -04:00
return;
}
}
}
void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle)
{
mp_raise_RuntimeError(translate("UART Callback Error"));
}
2019-07-31 14:58:55 -04:00
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
2019-10-11 15:47:55 -04:00
return self->baudrate;
2019-07-31 14:58:55 -04:00
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
2019-10-11 15:47:55 -04:00
//Don't reset if it's the same value
if (baudrate == self->baudrate) return;
//Otherwise de-init and set new rate
if(HAL_UART_DeInit(&self->handle) != HAL_OK) {
mp_raise_ValueError(translate("UART De-init error"));
}
self->handle.Init.BaudRate = baudrate;
if(HAL_UART_Init(&self->handle) != HAL_OK) {
mp_raise_ValueError(translate("UART Re-init error"));
}
self->baudrate = baudrate;
2019-07-31 14:58:55 -04:00
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
2019-10-11 15:47:55 -04:00
return ringbuf_count(&self->rbuf);
2019-07-31 14:58:55 -04:00
}
void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
2019-10-11 15:47:55 -04:00
// Halt reception
HAL_UART_AbortReceive_IT(&self->handle);
ringbuf_clear(&self->rbuf);
HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
2019-07-31 14:58:55 -04:00
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
2019-10-11 15:47:55 -04:00
return true;
2019-07-31 14:58:55 -04:00
}
2019-10-16 11:33:55 -04:00
static void call_hal_irq(int uart_num) {
//Create casted context pointer
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[uart_num-1];
if(context != NULL) {
HAL_UART_IRQHandler(&context->handle);
} else {
mp_raise_ValueError(translate("UART IRQ bad handle supplied"));
}
}
// UART/USART IRQ handlers
void USART1_IRQHandler(void) {
call_hal_irq(1);
}
void USART2_IRQHandler(void) {
call_hal_irq(2);
}
void USART3_IRQHandler(void) {
call_hal_irq(3);
}
void UART4_IRQHandler(void) {
call_hal_irq(4);
}
void UART5_IRQHandler(void) {
call_hal_irq(5);
}
void USART6_IRQHandler(void) {
call_hal_irq(6);
}