circuitpython/ports/espressif/common-hal/espnow/ESPNow.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

328 lines
12 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017-2020 Nick Moore
* Copyright (c) 2018 shawwwn <shawwwn1@gmail.com>
* Copyright (c) 2020-2021 Glenn Moloney @glenn20
* Copyright (c) 2023 MicroDev
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mperrno.h"
#include "py/runtime.h"
#include "bindings/espnow/ESPNowPacket.h"
#include "shared-bindings/wifi/__init__.h"
#include "common-hal/espnow/ESPNow.h"
#include "mphalport.h"
#include "esp_now.h"
#define ESPNOW_MAGIC 0x99
// The maximum length of an espnow packet (bytes)
#define MAX_PACKET_LEN (sizeof(espnow_packet_t) + ESP_NOW_MAX_DATA_LEN)
// Enough for 2 full-size packets: 2 * (6 + 7 + 250) = 526 bytes
// Will allocate an additional 7 bytes for buffer overhead
#define DEFAULT_RECV_BUFFER_SIZE (2 * MAX_PACKET_LEN)
// Time to wait (millisec) for responses from sent packets: (2 seconds).
#define DEFAULT_SEND_TIMEOUT_MS (2 * 1000)
// Number of milliseconds to wait for pending responses to sent packets.
// This is a fallback which should never be reached.
#define PENDING_RESPONSES_TIMEOUT_MS 100
#define PENDING_RESPONSES_BUSY_POLL_MS 10
// ESPNow packet format for the receive buffer.
// Use this for peeking at the header of the next packet in the buffer.
typedef struct {
uint8_t magic; // = ESPNOW_MAGIC
uint8_t msg_len; // Length of the message
uint32_t time_ms; // Timestamp (ms) when packet is received
int8_t rssi; // RSSI value (dBm) (-127 to 0)
} __attribute__((packed)) espnow_header_t;
typedef struct {
espnow_header_t header; // The header
uint8_t peer[6]; // Peer address
uint8_t msg[0]; // Message is up to 250 bytes
} __attribute__((packed)) espnow_packet_t;
static void check_esp_err(esp_err_t status) {
if (status != ESP_OK) {
mp_raise_RuntimeError(translate("an error occured"));
}
}
// Return a pointer to the ESPNow module singleton
static espnow_obj_t *_get_singleton(void) {
return MP_STATE_PORT(espnow_singleton);
}
// --- The ESP-NOW send and recv callback routines ---
// Callback triggered when a sent packet is acknowledged by the peer (or not).
// Just count the number of responses and number of failures.
// These are used in the send() logic.
static void send_cb(const uint8_t *mac, esp_now_send_status_t status) {
espnow_obj_t *self = _get_singleton();
self->tx_responses++;
if (status != ESP_NOW_SEND_SUCCESS) {
self->tx_failures++;
}
}
static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg);
// Callback triggered when an ESP-NOW packet is received.
// Write the peer MAC address and the message into the recv_buffer as an ESPNow packet.
// If the buffer is full, drop the message and increment the dropped count.
static void recv_cb(const uint8_t *mac, const uint8_t *msg, int msg_len) {
espnow_obj_t *self = _get_singleton();
ringbuf_t *buf = self->recv_buffer;
if (sizeof(espnow_packet_t) + msg_len > ringbuf_num_empty(buf)) {
self->rx_failures++;
return;
}
espnow_header_t header;
header.magic = ESPNOW_MAGIC;
header.msg_len = msg_len;
header.rssi = _get_rssi_from_wifi_packet(msg);
header.time_ms = mp_hal_ticks_ms();
ringbuf_put_n(buf, (uint8_t *)&header, sizeof(header));
ringbuf_put_n(buf, mac, ESP_NOW_ETH_ALEN);
ringbuf_put_n(buf, msg, msg_len);
self->rx_packets++;
}
bool common_hal_espnow_deinited(espnow_obj_t *self) {
2023-02-02 11:04:24 -05:00
return self == NULL || self->recv_buffer == NULL;
}
// Initialize the ESP-NOW software stack,
// register callbacks and allocate the recv data buffers.
void common_hal_espnow_init(espnow_obj_t *self) {
if (!common_hal_espnow_deinited(self)) {
return;
}
self->recv_buffer = m_new_obj(ringbuf_t);
if (!ringbuf_alloc(self->recv_buffer, self->recv_buffer_size, true)) {
m_malloc_fail(self->recv_buffer_size);
}
if (!common_hal_wifi_radio_get_enabled(&common_hal_wifi_radio_obj)) {
common_hal_wifi_init(false);
common_hal_wifi_radio_set_enabled(&common_hal_wifi_radio_obj, true);
}
check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_STA, self->phy_rate));
check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_AP, self->phy_rate));
check_esp_err(esp_now_init());
check_esp_err(esp_now_register_send_cb(send_cb));
check_esp_err(esp_now_register_recv_cb(recv_cb));
}
// De-initialize the ESP-NOW software stack,
// disable callbacks and deallocate the recv data buffers.
void common_hal_espnow_deinit(espnow_obj_t *self) {
2023-02-02 11:04:24 -05:00
if (common_hal_espnow_deinited(self)) {
return;
}
check_esp_err(esp_now_unregister_send_cb());
check_esp_err(esp_now_unregister_recv_cb());
check_esp_err(esp_now_deinit());
self->recv_buffer->buf = NULL;
self->recv_buffer = NULL;
2023-02-02 11:04:24 -05:00
// self->peers_count = 0; // esp_now_deinit() removes all peers.
self->tx_packets = self->tx_responses;
}
void espnow_reset(void) {
common_hal_espnow_deinit(_get_singleton());
MP_STATE_PORT(espnow_singleton) = NULL;
}
void common_hal_espnow_set_buffer_size(espnow_obj_t *self, mp_int_t value) {
self->recv_buffer_size = mp_arg_validate_int_min(value, MAX_PACKET_LEN, MP_QSTR_buffer_size);
};
void common_hal_espnow_set_phy_rate(espnow_obj_t *self, mp_int_t value) {
self->phy_rate = mp_arg_validate_int_range(value, 0, WIFI_PHY_RATE_MAX - 1, MP_QSTR_phy_rate);
};
void common_hal_espnow_set_pmk(espnow_obj_t *self, const uint8_t *key) {
check_esp_err(esp_now_set_pmk(key));
}
// --- Maintaining the peer table and reading RSSI values ---
// We maintain a peers table for several reasons, to:
// - support monitoring the RSSI values for all peers; and
// - to return unique bytestrings for each peer which supports more efficient
// application memory usage and peer handling.
// Get the RSSI value from the wifi packet header
static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg) {
// Warning: Secret magic to get the rssi from the wifi packet header
// See espnow.c:espnow_recv_cb() at https://github.com/espressif/esp-now/
// In the wifi packet the msg comes after a wifi_promiscuous_pkt_t
// and a espnow_frame_format_t.
// Backtrack to get a pointer to the wifi_promiscuous_pkt_t.
#define SIZEOF_ESPNOW_FRAME_FORMAT 39
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
wifi_promiscuous_pkt_t *wifi_packet = (wifi_promiscuous_pkt_t *)(
msg - SIZEOF_ESPNOW_FRAME_FORMAT - sizeof(wifi_promiscuous_pkt_t));
#pragma GCC diagnostic pop
return wifi_packet->rx_ctrl.rssi;
}
// Lookup a peer in the peers table and return a reference to the item in the peers_table.
// Add peer to the table if it is not found (may alloc memory). Will not return NULL.
static mp_map_elem_t *_lookup_add_peer(espnow_obj_t *self, const uint8_t *peer) {
// We do not want to allocate any new memory in the case that the peer
// already exists in the peers_table (which is almost all the time).
// So, we use a byte string on the stack and look that up in the dict.
mp_map_t *map = mp_obj_dict_get_map(self->peers_table);
mp_obj_str_t peer_obj = {{&mp_type_bytes}, 0, ESP_NOW_ETH_ALEN, peer};
mp_map_elem_t *item = mp_map_lookup(map, &peer_obj, MP_MAP_LOOKUP);
if (item == NULL) {
// If not found, add the peer using a new bytestring
map->is_fixed = 0; // Allow to modify the dict
mp_obj_t new_peer = mp_obj_new_bytes(peer, ESP_NOW_ETH_ALEN);
item = mp_map_lookup(map, new_peer, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
item->value = mp_obj_new_list(2, NULL);
map->is_fixed = 1; // Relock the dict
}
return item;
}
// Update the peers table with the new rssi value from a received packet and
// return a reference to the item in the peers_table.
static void _update_rssi(espnow_obj_t *self, const uint8_t *peer, int8_t rssi, uint32_t time_ms) {
// Lookup the peer in the device table
mp_map_elem_t *item = _lookup_add_peer(self, peer);
mp_obj_list_t *list = MP_OBJ_TO_PTR(item->value);
list->items[0] = MP_OBJ_NEW_SMALL_INT(rssi);
list->items[1] = mp_obj_new_int(time_ms);
}
// --- Send and Receive ESP-NOW data ---
// Used by espnow_send() for sends() with sync==True.
// Wait till all pending sent packet responses have been received.
// ie. self->tx_responses == self->tx_packets.
static void _wait_for_pending_responses(espnow_obj_t *self) {
mp_uint_t t, start = mp_hal_ticks_ms();
while (self->tx_responses < self->tx_packets) {
if ((t = mp_hal_ticks_ms() - start) > PENDING_RESPONSES_TIMEOUT_MS) {
mp_raise_OSError(MP_ETIMEDOUT);
}
if (t > PENDING_RESPONSES_BUSY_POLL_MS) {
// After 10ms of busy waiting give other tasks a look in.
RUN_BACKGROUND_TASKS;
}
}
}
mp_obj_t common_hal_espnow_send(espnow_obj_t *self, const bool sync, const uint8_t *mac, const mp_buffer_info_t *message) {
if (sync) {
// Flush out any pending responses.
// If the last call was sync == False there may be outstanding responses
// still to be received (possible many if we just had a burst of unsync send()s).
// We need to wait for all pending responses if this call has sync = True.
_wait_for_pending_responses(self);
}
// Send the packet - try, try again if internal esp-now buffers are full.
esp_err_t err;
size_t saved_failures = self->tx_failures;
mp_uint_t start = mp_hal_ticks_ms();
while ((ESP_ERR_ESPNOW_NO_MEM == (err = esp_now_send(mac, message->buf, message->len))) &&
(mp_hal_ticks_ms() - start) <= DEFAULT_SEND_TIMEOUT_MS) {
RUN_BACKGROUND_TASKS;
}
check_esp_err(err);
// Increment the sent packet count.
// If mac == NULL msg will be sent to all peers EXCEPT any broadcast or multicast addresses.
2023-02-02 11:04:24 -05:00
self->tx_packets += ((mac == NULL) ? ((mp_obj_list_t *)self->peers->list)->len : 1);
if (sync) {
// Wait for and tally all the expected responses from peers
_wait_for_pending_responses(self);
}
// Return False if sync and any peers did not respond.
return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures));
}
mp_obj_t common_hal_espnow_recv(espnow_obj_t *self) {
if (!ringbuf_num_filled(self->recv_buffer)) {
return mp_const_none;
}
// Read the packet header from the incoming buffer
espnow_header_t header;
if (ringbuf_get_n(self->recv_buffer, (uint8_t *)&header, sizeof(header)) != sizeof(header)) {
mp_arg_error_invalid(MP_QSTR_buffer);
}
uint8_t msg_len = header.msg_len;
uint8_t mac_buf[ESP_NOW_ETH_ALEN];
uint8_t msg_buf[msg_len];
// Check the message packet header format and read the message data
if (header.magic != ESPNOW_MAGIC ||
msg_len > ESP_NOW_MAX_DATA_LEN ||
ringbuf_get_n(self->recv_buffer, mac_buf, ESP_NOW_ETH_ALEN) != ESP_NOW_ETH_ALEN ||
ringbuf_get_n(self->recv_buffer, msg_buf, msg_len) != msg_len) {
mp_arg_error_invalid(MP_QSTR_buffer);
}
// Update rssi value in the peer device table
_update_rssi(self, mac_buf, header.rssi, header.time_ms);
mp_obj_t elems[4] = {
mp_obj_new_bytes(mac_buf, ESP_NOW_ETH_ALEN),
mp_obj_new_bytes(msg_buf, msg_len),
MP_OBJ_NEW_SMALL_INT(header.rssi),
mp_obj_new_int(header.time_ms),
};
return namedtuple_make_new((const mp_obj_type_t *)&espnow_packet_type_obj, 4, 0, elems);
}