mirror of
https://github.com/DJSundog/NopSCADlib.git
synced 2024-11-23 15:23:51 -05:00
77 lines
4.1 KiB
OpenSCAD
77 lines
4.1 KiB
OpenSCAD
//
|
|
// NopSCADlib Copyright Chris Palmer 2018
|
|
// nop.head@gmail.com
|
|
// hydraraptor.blogspot.com
|
|
//
|
|
// This file is part of NopSCADlib.
|
|
//
|
|
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
|
|
// GNU General Public License as published by the Free Software Foundation, either version 3 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with NopSCADlib.
|
|
// If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
//
|
|
//! Maths utilities for minapulating vectors and matrices.
|
|
//
|
|
function sqr(x) = x * x;
|
|
|
|
function translate(v) = let(u = is_list(v) ? len(v) == 2 ? [v.x, v.y, 0] //! Generate a 4x4 translation matrix, ```v``` can be ```[x, y]```, ```[x, y, z]``` or ```z```
|
|
: v
|
|
: [0, 0, v])
|
|
[ [1, 0, 0, u.x],
|
|
[0, 1, 0, u.y],
|
|
[0, 0, 1, u.z],
|
|
[0, 0, 0, 1] ];
|
|
|
|
function rotate(a, v) = //! Generate a 4x4 rotation matrix, ```a``` can be a vector of three angles or a single angle around ```z```, or around axis ```v```
|
|
is_undef(v) ? let(av = is_list(a) ? a : [0, 0, a],
|
|
cx = cos(av[0]),
|
|
cy = cos(av[1]),
|
|
cz = cos(av[2]),
|
|
sx = sin(av[0]),
|
|
sy = sin(av[1]),
|
|
sz = sin(av[2]))
|
|
[
|
|
[ cy * cz, cz * sx * sy - cx * sz, cx * cz * sy + sx * sz, 0],
|
|
[ cy * sz, cx * cz + sx * sy * sz,-cz * sx + cx * sy * sz, 0],
|
|
[-sy, cy * sx, cx * cy, 0],
|
|
[ 0, 0, 0, 1]
|
|
]
|
|
: let(s = sin(a),
|
|
c = cos(a),
|
|
C = 1 - c,
|
|
m = sqr(v.x) + sqr(v.y) + sqr(v.z), // m used instead of norm to avoid irrational roots as much as possible
|
|
u = v / sqrt(m))
|
|
[
|
|
[ C * v.x * v.x / m + c, C * v.x * v.y / m - u.z * s, C * v.x * v.z / m + u.y * s, 0],
|
|
[ C * v.y * v.x / m + u.z * s, C * v.y * v.y / m + c, C * v.y * v.z / m - u.x * s, 0],
|
|
[ C * v.z * v.x / m - u.y * s, C * v.z * v.y / m + u.x * s, C * v.z * v.z / m + c, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
function scale(v) = let(s = is_list(v) ? v : [v, v, v]) //! Generate a 4x4 matrix that scales by ```v```, which can be a vector of xyz factors or a scalar to scale all axes equally
|
|
[
|
|
[s.x, 0, 0, 0],
|
|
[0, s.y, 0, 0],
|
|
[0, 0, s.z, 0],
|
|
[0, 0, 0, 1]
|
|
];
|
|
|
|
function vec3(v) = [v.x, v.y, v.z]; //! Return a 3 vector with the first three elements of ```v```
|
|
function transform(v, m) = vec3(m * [v.x, v.y, v.z, 1]); //! Apply 4x4 transform to a 3 vector by extending it and cropping it again
|
|
function transform_points(path, m) = [for(p = path) transform(p, m)]; //! Apply transform to a path
|
|
function unit(v) = let(n = norm(v)) n ? v / n : v; //! Convert ```v``` to a unit vector
|
|
|
|
function transpose(m) = [ for(j = [0 : len(m[0]) - 1]) [ for(i = [0 : len(m) - 1]) m[i][j] ] ]; //! Transpose an arbitrary size matrix
|
|
|
|
function identity(n, x = 1) = [for(i = [0 : n - 1]) [for(j = [0 : n - 1]) i == j ? x : 0] ]; //! Construct an arbitrary size identity matrix
|
|
|
|
function reverse(v) = let(n = len(v) - 1) n < 0 ? [] : [for(i = [0 : n]) v[n - i]]; //! Reverse a vector
|