mirror of
https://github.com/DJSundog/NopSCADlib.git
synced 2025-01-25 17:12:46 -05:00
ab592e049c
anywhere else. utils/core/core.scad is the old version without fasteners to be used internally in the library.
175 lines
7.7 KiB
OpenSCAD
175 lines
7.7 KiB
OpenSCAD
//
|
|
// NopSCADlib Copyright Chris Palmer 2018
|
|
// nop.head@gmail.com
|
|
// hydraraptor.blogspot.com
|
|
//
|
|
// This file is part of NopSCADlib.
|
|
//
|
|
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
|
|
// GNU General Public License as published by the Free Software Foundation, either version 3 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with NopSCADlib.
|
|
// If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
//
|
|
//! Utility to generate a polhedron by sweeping a 2D profile along a 3D path and utilities for generating paths.
|
|
//!
|
|
//! The initial orientation is the Y axis of the profile points towards the initial center of curvature, Frenet-Serret style.
|
|
//! This means the first three points must not be colinear. Subsequent rotations use the minimum rotation method.
|
|
//!
|
|
//! The path can be open or closed. If closed sweep ensures that the start and end have the same rotation to line up.
|
|
//! An additional twist around the path can be specified. If the path is closed this should be a multiple of 360.
|
|
//
|
|
include <../utils/core/core.scad>
|
|
|
|
use <maths.scad>
|
|
|
|
function transpose3(m) = [ [m[0].x, m[1].x, m[2].x],
|
|
[m[0].y, m[1].y, m[2].y],
|
|
[m[0].z, m[1].z, m[2].z] ];
|
|
//
|
|
// Frenet-Serret frame
|
|
//
|
|
function fs_frame(tangents) =
|
|
let(tangent = tangents[0],
|
|
normal = tangents[1] - tangents[0],
|
|
binormal = cross(tangent, normal),
|
|
z = unit(tangent),
|
|
x = assert(norm(binormal) > 0.00001, "first three points are colinear") unit(binormal),
|
|
y = unit(cross(z, x))
|
|
) [[x.x, y.x, z.x],
|
|
[x.y, y.y, z.y],
|
|
[x.z, y.z, z.z]];
|
|
//
|
|
// Computes the rotation with minimum angle that brings UNIT vectors a to b.
|
|
// The code fails if a and b are opposed to each other.
|
|
//
|
|
function rotate_from_to(a, b) =
|
|
let(axis = unit(cross(a, b)))
|
|
axis * axis >= 0.99 ? transpose3([b, axis, cross(axis, b)]) * [a, axis, cross(axis, a)]
|
|
: a * b > 0 ? [[ 1, 0, 0], [0, 1, 0], [0, 0, 1]]
|
|
: [[-1, 0, 0], [0, 1, 0], [0, 0, -1]];
|
|
//
|
|
// Given two rotations A and B, calculates the angle between B*[1,0,0]
|
|
// and A*[1,0,0] that is, the total torsion angle difference between A and B.
|
|
//
|
|
function calculate_twist(A, B) = let(D = transpose3(B) * A) atan2(D[1][0], D[0][0]);
|
|
//
|
|
// Compute a 4x3 matrix to orientate a frame of the sweep given the position and a 3x3 rotation matrix.
|
|
// Note that the rotation matrix is transposed to allow post multiplication.
|
|
//
|
|
function orientate(p, r) =
|
|
let(x = r[0], y = r[1], z = r[2])
|
|
[[x.x, y.x, z.x],
|
|
[x.y, y.y, z.y],
|
|
[x.z, y.z, z.z],
|
|
[p.x, p.y, p.z]];
|
|
|
|
//
|
|
// Rotate around z
|
|
//
|
|
function rot3_z(a) =
|
|
let(c = cos(a),
|
|
s = sin(a))
|
|
[ [ c, -s, 0],
|
|
[ s, c, 0],
|
|
[ 0, 0, 1] ];
|
|
//
|
|
// Calculate the unit tangent at a vertex given the indices before and after. One of these can be the same as i in the case
|
|
// of the start and end of a non closed path. Note that the edges are converted to unit vectors so that their relative lengths
|
|
// don't affect the direction of the tangent.
|
|
//
|
|
function tangent(path, before, i, after) = unit(unit(path[i] - path[before]) + unit(path[after] - path[i]));
|
|
//
|
|
// Calculate the twist per segment caused by rotate_from_to() instead of a simple Euler rotation around Z.
|
|
//
|
|
function helical_twist_per_segment(r, pitch, sides) = //! Calculate the twist around Z that rotate_from_to() introduces
|
|
let(step_angle = 360 / sides,
|
|
lt = 2 * r * sin(step_angle), // length of tangent between two facets
|
|
slope = atan(2 * pitch / sides / lt) // slope of tangents
|
|
) step_angle * sin(slope); // angle tangent should rotate around z projected onto axis rotate_from_to() uses
|
|
|
|
//
|
|
// Generate all the surface points of the swept volume.
|
|
//
|
|
function skin_points(profile, path, loop, twist = 0) =
|
|
let(len = len(path),
|
|
last = len - 1,
|
|
|
|
profile4 = [for(p = profile) [p.x, p.y, p.z, 1]],
|
|
|
|
tangents = [tangent(path, loop ? last : 0, 0, 1),
|
|
for(i = [1 : last - 1]) tangent(path, i - 1, i, i + 1),
|
|
tangent(path, last - 1, last, loop ? 0 : last)],
|
|
|
|
rotations = [for(i = 0, rot = fs_frame(tangents);
|
|
i < len;
|
|
i = i + 1,
|
|
rot = i < len ? rotate_from_to(tangents[i - 1], tangents[i]) * rot : undef) rot],
|
|
|
|
missmatch = loop ? calculate_twist(rotations[0], rotations[last]) : 0,
|
|
rotation = missmatch + twist
|
|
)
|
|
[for(i = [0 : last])
|
|
let(za = rotation * i / last)
|
|
each profile4 * orientate(path[i], rotations[i] * rot3_z(za))
|
|
];
|
|
|
|
function cap(facets, segment = 0, end) = //! Create the mesh for an end cap
|
|
let(reverse = is_undef(end) ? segment : end)
|
|
[for(i = [0 : facets - 1]) facets * segment + (reverse ? i : facets - 1 - i)];
|
|
|
|
function quad(p, a, b, c, d) = norm(p[a] - p[c]) > norm(p[b] - p[d]) ? [[b, c, d], [b, d, a]] : [[a, b, c], [a, c, d]];
|
|
|
|
function skin_faces(points, npoints, facets, loop, offset = 0) = //! Create the mesh for the swept volume without end caps
|
|
[for(i = [0 : facets - 1], s = [0 : npoints - (loop ? 1 : 2)])
|
|
let(j = s + offset, k = loop ? (j + 1) % npoints : j + 1)
|
|
each quad(points,
|
|
j * facets + i,
|
|
j * facets + (i + 1) % facets,
|
|
k * facets + (i + 1) % facets,
|
|
k * facets + i)];
|
|
|
|
function sweep(path, profile, loop = false, twist = 0) = //! Generate the point list and face list of the swept volume
|
|
let(
|
|
npoints = len(path),
|
|
facets = len(profile),
|
|
points = skin_points(profile, path, loop, twist),
|
|
skin_faces = skin_faces(points, npoints, facets, loop),
|
|
faces = loop ? skin_faces : concat([cap(facets)], skin_faces, [cap(facets, npoints - 1)])
|
|
) [points, faces];
|
|
|
|
module sweep(path, profile, loop = false, twist = 0) { //! Draw a polyhedron that is the swept volume
|
|
mesh = sweep(path, profile, loop, twist);
|
|
|
|
polyhedron(points = mesh[0], faces = mesh[1]);
|
|
}
|
|
|
|
function path_length(path, i = 0, length = 0) = //! Calculated the length along a path
|
|
i >= len(path) - 1 ? length
|
|
: path_length(path, i + 1, length + norm(path[i + 1] - path[i]));
|
|
|
|
function circle_points(r = 1, z = 0, dir = -1) = //! Generate the points of a circle, setting z makes a single turn spiral
|
|
let(sides = r2sides(r))
|
|
[for(i = [0 : sides - 1]) let(a = dir * i * 360 / sides) [r * cos(a), r * sin(a), z * i / sides]];
|
|
|
|
function rectangle_points(w, h) = [[-w/2, -h/2, 0], [-w/2, h/2, 0], [w/2, h/2, 0], [w/2, -h/2, 0]]; //! Generate the points of a rectangle
|
|
|
|
function arc_points(r, a = [90, 0, 180], al = 90) = //! Generate the points of a circular arc
|
|
let(sides = ceil(r2sides(r) * al / 360), tf = rotate(a))
|
|
[for(i = [0 : sides]) let(t = i * al / sides) transform([r * sin(t), r * cos(t), 0], tf)];
|
|
|
|
function before(path1, path2) = //! Translate ```path1``` so its end meets the start of ```path2``` and then concatenate
|
|
let(end = len(path1) - 1, offset = path2[0] - path1[end])
|
|
concat([for(i = [0 : end - 1]) path1[i] + offset], path2);
|
|
|
|
function after(path1, path2) = //! Translate ```path2``` so its start meets the end of ```path1``` and then concatenate
|
|
let(end1 = len(path1) - 1, end2 = len(path2) - 1, offset = path1[end1] - path2[0])
|
|
concat(path1, [for(i = [1 : end2]) path2[i] + offset]);
|