// // NopSCADlib Copyright Chris Palmer 2018 // nop.head@gmail.com // hydraraptor.blogspot.com // // This file is part of NopSCADlib. // // NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the // GNU General Public License as published by the Free Software Foundation, either version 3 of // the License, or (at your option) any later version. // // NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; // without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along with NopSCADlib. // If not, see . // // //! Maths utilities for manipulating vectors and matrices. // function sqr(x) = x * x; function translate(v) = let(u = is_list(v) ? len(v) == 2 ? [v.x, v.y, 0] //! Generate a 4x4 translation matrix, ```v``` can be ```[x, y]```, ```[x, y, z]``` or ```z``` : v : [0, 0, v]) [ [1, 0, 0, u.x], [0, 1, 0, u.y], [0, 0, 1, u.z], [0, 0, 0, 1] ]; function rotate(a, v) = //! Generate a 4x4 rotation matrix, ```a``` can be a vector of three angles or a single angle around ```z```, or around axis ```v``` is_undef(v) ? let(av = is_list(a) ? a : [0, 0, a], cx = cos(av[0]), cy = cos(av[1]), cz = cos(av[2]), sx = sin(av[0]), sy = sin(av[1]), sz = sin(av[2])) [ [ cy * cz, sx * sy * cz - cx * sz, cx * sy * cz + sx * sz, 0], [ cy * sz, sx * sy * sz + cx * cz, cx * sy * sz - sx * cz, 0], [-sy, sx * cy, cx * cy, 0], [ 0, 0, 0, 1] ] : let(s = sin(a), c = cos(a), C = 1 - c, m = sqr(v.x) + sqr(v.y) + sqr(v.z), // m used instead of norm to avoid irrational roots as much as possible u = v / sqrt(m)) [ [ C * v.x * v.x / m + c, C * v.x * v.y / m - u.z * s, C * v.x * v.z / m + u.y * s, 0], [ C * v.y * v.x / m + u.z * s, C * v.y * v.y / m + c, C * v.y * v.z / m - u.x * s, 0], [ C * v.z * v.x / m - u.y * s, C * v.z * v.y / m + u.x * s, C * v.z * v.z / m + c, 0], [ 0, 0, 0, 1] ]; function rot3_z(a) = //! Generate a 3x3 matrix to rotate around z let(c = cos(a), s = sin(a)) [ [ c, -s, 0], [ s, c, 0], [ 0, 0, 1] ]; function scale(v) = let(s = is_list(v) ? v : [v, v, v]) //! Generate a 4x4 matrix that scales by ```v```, which can be a vector of xyz factors or a scalar to scale all axes equally [ [s.x, 0, 0, 0], [0, s.y, 0, 0], [0, 0, s.z, 0], [0, 0, 0, 1] ]; function vec3(v) = [v.x, v.y, v.z]; //! Return a 3 vector with the first three elements of ```v``` function vec4(v) = [v.x, v.y, v.z, 1]; //! Return a 4 vector with the first three elements of ```v``` function transform(v, m) = vec3(m * [v.x, v.y, v.z, 1]); //! Apply 4x4 transform to a 3 vector by extending it and cropping it again function transform_points(path, m) = [for(p = path) transform(p, m)]; //! Apply transform to a path function unit(v) = let(n = norm(v)) n ? v / n : v; //! Convert ```v``` to a unit vector function transpose(m) = [ for(j = [0 : len(m[0]) - 1]) [ for(i = [0 : len(m) - 1]) m[i][j] ] ]; //! Transpose an arbitrary size matrix function identity(n, x = 1) = [for(i = [0 : n - 1]) [for(j = [0 : n - 1]) i == j ? x : 0] ]; //! Construct an arbitrary size identity matrix function reverse(v) = let(n = len(v) - 1) n < 0 ? [] : [for(i = [0 : n]) v[n - i]]; //! Reverse a vector function angle_between(v1, v2) = acos(v1 * v2 / (norm(v1) * norm(v2))); //! Return the angle between two vectors // https://www.gregslabaugh.net/publications/euler.pdf function euler(R) = let(ay = asin(-R[2][0]), cy = cos(ay)) //! Convert a rotation matrix to a Euler rotation vector. cy ? [ atan2(R[2][1] / cy, R[2][2] / cy), ay, atan2(R[1][0] / cy, R[0][0] / cy) ] : R[2][0] < 0 ? [atan2( R[0][1], R[0][2]), 180, 0] : [atan2(-R[0][1], -R[0][2]), -180, 0]; module position_children(list, t) //! Position children if they are on the Z = 0 plane when transformed by t for(p = list) let(q = t * p) if(abs(transform([0, 0, 0], q).z) < 0.01) multmatrix(q) children(); // Matrix inversion: https://www.mathsisfun.com/algebra/matrix-inverse-row-operations-gauss-jordan.html function augment(m) = let(l = len(m), n = identity(l)) [ //! Augment a matrix by adding an identity matrix to the right for(i = [0 : l - 1]) concat(m[i], n[i]) ]; function rowswap(m, i, j) = [ //! Swap two rows of a matrix for(k = [0 : len(m) - 1]) k == i ? m[j] : k == j ? m[i] : m[k] ]; function solve_row(m, i) = let(diag = m[i][i]) [ //! Make diagonal one by dividing the row by it and subtract from other rows to make column zero for(j = [0 : len(m) - 1]) i == j ? m[j] / diag : m[j] - m[i] * m[j][i] / diag ]; function nearly_zero(x) = abs(x) < 1e-5; //! True if x is close to zero function solve(m, i = 0, j = 0) = //! Solve each row ensuring diagonal is not zero i < len(m) ? assert(i + j < len(m), "matrix is singular") solve(!nearly_zero(m[i + j][i]) ? solve_row(j ? rowswap(m, i, i + j) : m, i) : solve(m, i, j + 1), i + 1) : m; function invert(m) = let(n =len(m), m = solve(augment(m))) [ //! Invert a matrix for(i = [0 : n - 1]) [ for(j = [n : 2 * n - 1]) each m[i][j] ] ];