// // NopSCADlib Copyright Chris Palmer 2018 // nop.head@gmail.com // hydraraptor.blogspot.com // // This file is part of NopSCADlib. // // NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the // GNU General Public License as published by the Free Software Foundation, either version 3 of // the License, or (at your option) any later version. // // NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; // without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along with NopSCADlib. // If not, see . // // //! Utility to generate a polhedron by sweeping a 2D profile along a 3D path and utilities for generating paths. //! //! The initial orientation is the Y axis of the profile points towards the initial center of curvature, Frenet-Serret style. //! This means the first three points must not be colinear. Subsequent rotations use the minimum rotation method. //! //! The path can be open or closed. If closed sweep ensures that the start and end have the same rotation to line up. //! An additional twist around the path can be specified. If the path is closed this should be a multiple of 360. // include <../core.scad> use function transpose3(m) = [ [m[0].x, m[1].x, m[2].x], [m[0].y, m[1].y, m[2].y], [m[0].z, m[1].z, m[2].z] ]; // // Frenet-Serret frame // function fs_frame(tangents) = let(tangent = tangents[0], normal = tangents[1] - tangents[0], binormal = cross(tangent, normal), z = unit(tangent), x = assert(norm(binormal) > 0.00001, "first three points are colinear") unit(binormal), y = unit(cross(z, x)) ) [[x.x, y.x, z.x], [x.y, y.y, z.y], [x.z, y.z, z.z]]; // // Computes the rotation with minimum angle that brings UNIT vectors a to b. // The code fails if a and b are opposed to each other. // function rotate_from_to(a, b) = let(axis = unit(cross(a, b))) axis * axis >= 0.99 ? transpose3([b, axis, cross(axis, b)]) * [a, axis, cross(axis, a)] : a * b > 0 ? [[ 1, 0, 0], [0, 1, 0], [0, 0, 1]] : [[-1, 0, 0], [0, 1, 0], [0, 0, -1]]; // // Given two rotations A and B, calculates the angle between B*[1,0,0] // and A*[1,0,0] that is, the total torsion angle difference between A and B. // function calculate_twist(A, B) = let(D = transpose3(B) * A) atan2(D[1][0], D[0][0]); // // Compute a 4x4 matrix to orientate a frame of the sweep given the position and a 3x3 rotation matrix. // function orientate(p, r) = let(x = r[0], y = r[1], z = r[2]) [[x.x, y.x, z.x], [x.y, y.y, z.y], [x.z, y.z, z.z], [p.x, p.y, p.z]]; // // Rotate around z // function rot3_z(a) = let(c = cos(a), s = sin(a)) [ [ c, -s, 0], [ s, c, 0], [ 0, 0, 1] ]; // // Calculate the unit tangent at a vertex given the indices before and after. One of these can be the same as i in the case // of the start and end of a non closed path. // function tangent(path, before, i, after) = unit(unit(path[after] - path[i]) - unit(path[before] - path[i])); // // Generate all the surface points of the swept volume. // function skin_points(profile, path, loop, twist = 0) = let(len = len(path), last = len - 1, profile4 = [for(p = profile) [p.x, p.y, p.z, 1]], tangents = [tangent(path, loop ? last : 0, 0, 1), for(i = [1 : last - 1]) tangent(path, i - 1, i, i + 1), tangent(path, last - 1, last, loop ? 0 : last)], rotations = [for(i = 0, rot = fs_frame(tangents); i < len; i = i + 1, rot = i < len ? rotate_from_to(tangents[i - 1], tangents[i]) * rot : undef) rot], missmatch = loop ? calculate_twist(rotations[0], rotations[last]) : 0, rotation = missmatch + twist ) [for(i = [0 : last]) let(za = rotation * i / last) each profile4 * orientate(path[i], rotations[i] * rot3_z(za)) ]; function cap(facets, segment = 0) = [for(i = [0 : facets - 1]) segment ? facets * segment + i : facets - 1 - i]; function quad(p, a,b,c,d) = norm(p[a] - p[c]) > norm(p[b] - p[d]) ? [[b, c, d], [b, d, a]] : [[a, b, c], [a, c, d]]; function skin_faces(points, segs, facets, loop) = [for(i = [0 : facets - 1], s = [0 : segs - (loop ? 1 : 2)]) each quad(points, s * facets + i, s * facets + (i + 1) % facets, ((s + 1) % segs) * facets + (i + 1) % facets, ((s + 1) % segs) * facets + i)]; function sweep(path, profile, loop = false, twist = 0) = //! Generate the point list and face list of the swept volume let( segments = len(path), facets = len(profile), points = skin_points(profile, path, loop, twist), skin_faces = skin_faces(points, segments, facets, loop), faces = loop ? skin_faces : concat([cap(facets)], skin_faces, [cap(facets, segments - 1)]) ) [points, faces]; module sweep(path, profile, loop = false, twist = 0) { //! Draw a polyhedron that is the swept volume mesh = sweep(path, profile, loop, twist); polyhedron(points = mesh[0], faces = mesh[1]); } function path_length(path, i = 0, length = 0) = //! Calculated the length along a path i >= len(path) - 1 ? length : path_length(path, i + 1, length + norm(path[i + 1] - path[i])); function circle_points(r = 1, z = 0) = //! Generate the points of a circle, setting z makes a single turn spiral let(sides = r2sides(r)) [for(i = [0 : sides - 1]) let(a = i * 360 / sides) [r * sin(a), r * cos(a), z * a / 360]]; function rectangle_points(w, h) = [[-w/2, -h/2, 0], [-w/2, h/2, 0], [w/2, h/2, 0], [w/2, -h/2, 0]]; //! Generate the points of a rectangle function arc_points(r, a = [90, 0, 180], al = 90) = //! Generate the points of a circular arc let(sides = ceil(r2sides(r) * al / 360), tf = rotate(a)) [for(i = [0 : sides]) let(t = i * al / sides) transform([r * sin(t), r * cos(t), 0], tf)]; function before(path1, path2) = //! Translate ```path1``` so its end meets the start of ```path2``` and then concatenate let(end = len(path1) - 1, offset = path2[0] - path1[end]) concat([for(i = [0 : end - 1]) path1[i] + offset], path2); function after(path1, path2) = //! Translate ```path2``` so its start meets the end of ```path1``` and then concatenate let(end1 = len(path1) - 1, end2 = len(path2) - 1, offset = path1[end1] - path2[0]) concat(path1, [for(i = [1 : end2]) path2[i] + offset]);