The assembly module now has a big parameter to force large or small views.

This commit is contained in:
Chris Palmer 2020-04-04 12:06:14 +01:00
parent f5980b4703
commit bc4e18d788
4 changed files with 50 additions and 28 deletions

View File

@ -5174,8 +5174,12 @@ Simple tube or ring
Bill Of Materials generation via echo and the ```bom.py``` script. Also handles exploded assembly views and posing. Assembly instructions can precede the module
definition that makes the assembly.
The example below shows how to define a vitamin and incorporate it into an assembly with sub-assemblies and make an exploded view. The resulting flat BOM is shown but
heirachical BOMs are also generated for real projects.
Assembly views shown in the instructions can be large or small and this is deduced by looking at the size of the printed parts involved and if any routed
parts are used.
This heuristic isn't always correct, so the default can be overridden by setting the ```big``` parameter of ```assembly``` to ```true``` or ```false```.
The example below shows how to define a vitamin and incorporate it into an assembly with sub-assemblies and make an exploded view.
The resulting flat BOM is shown but heirachical BOMs are also generated for real projects.
[utils/core/bom.scad](utils/core/bom.scad) Implementation.
@ -5194,7 +5198,7 @@ heirachical BOMs are also generated for real projects.
### Modules
| Module | Description |
|:--- |:--- |
| ```assembly(name)``` | Name an assembly that will appear on the BOM, there needs to a module named ```<name>_assembly``` to make it |
| ```assembly(name, big = undef)``` | Name an assembly that will appear on the BOM, there needs to a module named ```<name>_assembly``` to make it. ```big``` can force big or small assembly diagrams. |
| ```dxf(name)``` | Name a dxf that will appear on the BOM, there needs to a module named ```<name>_dxf``` to make it |
| ```explode(d, explode_children = false, offset = [0,0,0])``` | Explode children by specified Z distance or vector ```d```, option to explode grand children |
| ```hidden()``` | Make item invisible, except on the BOM |

View File

@ -29,6 +29,7 @@ import openscad
from time import *
from set_config import *
import json
import re
def find_scad_file(mname):
for filename in os.listdir(source_dir):
@ -48,6 +49,7 @@ def find_scad_file(mname):
class BOM:
def __init__(self, name):
self.name = name
self.big = None
self.count = 1
self.vitamins = {}
self.printed = {}
@ -60,6 +62,7 @@ class BOM:
assemblies[ass] = self.assemblies[ass].count
return {
"name" : self.name,
"big" : self.big,
"count" : self.count,
"assemblies" : assemblies,
"vitamins" : self.vitamins,
@ -80,11 +83,15 @@ class BOM:
else:
parts[s] = 1
def add_assembly(self, ass):
def add_assembly(self, ass, args = []):
if ass in self.assemblies:
self.assemblies[ass].count += 1
else:
self.assemblies[ass] = BOM(ass)
bom = BOM(ass)
for arg in args:
arg = arg.replace('true', 'True').replace('false', 'False').replace('undef', 'None')
exec('bom.' + arg, locals())
self.assemblies[ass] = bom
def make_name(self, ass):
if self.count == 1:
@ -161,17 +168,22 @@ def parse_bom(file = "openscad.log", name = None):
main = BOM(name)
main.ordered_assemblies = []
stack = []
prog = re.compile(r'^(.*)\((.*)\)$')
for line in open(file):
pos = line.find('ECHO: "~')
if pos > -1:
s = line[pos + 8 : line.rfind('"')]
if s[-1] == '{':
ass = s[:-1]
args = []
match = prog.match(ass) #look for (...)
if match:
ass = match.group(1)
args = match.group(2).split(',')
if stack:
main.assemblies[stack[-1]].add_assembly(ass) #add to nested BOM
stack.append(ass)
main.add_assembly(ass) #add to flat BOM
main.add_assembly(ass, args) #add to flat BOM
if ass in main.ordered_assemblies:
main.ordered_assemblies.remove(ass)
main.ordered_assemblies.insert(0, ass)

View File

@ -52,6 +52,7 @@ def bom_to_assemblies(bom_dir, bounds_map):
# Decide if we need big or small assembly pictures
#
for bom in flat_bom:
if bom["big"] == None:
big = False
for ass in bom["assemblies"]:
for b in flat_bom:

View File

@ -21,8 +21,12 @@
//! Bill Of Materials generation via echo and the ```bom.py``` script. Also handles exploded assembly views and posing. Assembly instructions can precede the module
//! definition that makes the assembly.
//!
//! The example below shows how to define a vitamin and incorporate it into an assembly with sub-assemblies and make an exploded view. The resulting flat BOM is shown but
//! heirachical BOMs are also generated for real projects.
//! Assembly views shown in the instructions can be large or small and this is deduced by looking at the size of the printed parts involved and if any routed
//! parts are used.
//! This heuristic isn't always correct, so the default can be overridden by setting the ```big``` parameter of ```assembly``` to ```true``` or ```false```.
//!
//! The example below shows how to define a vitamin and incorporate it into an assembly with sub-assemblies and make an exploded view.
//! The resulting flat BOM is shown but heirachical BOMs are also generated for real projects.
//
function bom_mode(n = 1) = $_bom >= n && (is_undef($on_bom) || $on_bom); //! Current BOM mode, 0 = none, 1 = printed and routed parts and assemblies, 2 includes vitamins as well
function exploded() = is_undef($exploded_parent) ? $exploded : 0; //! Returns the value of ```$exploded``` if it is defined, else ```0```
@ -80,10 +84,11 @@ module pose_vflip(exploded = undef) //! Pose an STL or assembly for render
children();
module assembly(name) { //! Name an assembly that will appear on the BOM, there needs to a module named ```<name>_assembly``` to make it
if(bom_mode())
echo(str("~", name, "_assembly{"));
module assembly(name, big = undef) { //! Name an assembly that will appear on the BOM, there needs to a module named ```<name>_assembly``` to make it. ```big``` can force big or small assembly diagrams.
if(bom_mode()) {
args = is_undef(big) ? "" : str("(big=", big, ")");
echo(str("~", name, "_assembly", args, "{"));
}
no_pose()
if(is_undef($child_assembly))
let($child_assembly = true)