NopSCADlib/vitamins/toggle.scad

158 lines
6.7 KiB
OpenSCAD
Raw Normal View History

2019-06-08 17:10:47 -04:00
//
// NopSCADlib Copyright Chris Palmer 2018
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
//
//! Toggle switches
//
include <../core.scad>
use <nut.scad>
use <washer.scad>
function toggle_part(type) = type[1]; //! Part description
function toggle_width(type) = type[2]; //! Body width
function toggle_height(type) = type[3]; //! Body height
function toggle_depth(type) = type[4]; //! Body depth
function toggle_thickness(type)= type[5]; //! Metal thickness
function toggle_inset(type) = type[6]; //! How far the metal is inset into the body
function toggle_colour(type) = type[7]; //! Body colour
function toggle_od(type) = type[8]; //! Barrel outside diameter
function toggle_id(type) = type[9]; //! Barrel inside diameter
function toggle_thread(type) = type[10]; //! Length of threaded barrel
function toggle_collar_d(type) = type[11]; //! Collar diameter
function toggle_collar_t(type) = type[12]; //! Collar thickness
function toggle_pivot(type) = type[13]; //! Z offset of the pivot point above the top of the body
function toggle_angle(type) = type[14]; //! Angle of the paddle
function toggle_paddle_l(type) = type[15]; //! Length of the paddle
function toggle_paddle_d1(type)= type[16]; //! Diameter at the top of the paddle
function toggle_paddle_w(type) = type[17]; //! Width at the top for non-spherical end
function toggle_nut(type) = type[18]; //! Nut type
function toggle_washer(type) = type[19]; //! Washer type
function toggle_pins(type) = type[20]; //! Number of pins
function toggle_pin_l(type) = type[21][0]; //! Pin length
function toggle_pin_w(type) = type[21][1]; //! Pin width
function toggle_pin_t(type) = type[21][2]; //! Pin thickness
function toggle_pin_vp(type) = type[21][3]; //! Pin y pitch
function toggle_pin_hp(type) = type[21][4]; //! Pin x pitch
function toggle_hole_radius(type) = toggle_od(type) / 2 + 0.1; //! Radius of the panel hole
module toggle(type, thickness) { //! Draw specified toggle switch with the nuts and washers positioned for the specified panel thickness
vitamin(str("toggle(", type[0], ", 3): Toggle switch ", toggle_part(type)));
inset = toggle_inset(type);
t = toggle_thickness(type);
h1 = toggle_depth(type) - t;
h2 = toggle_depth(type) - inset;
t2 = (toggle_od(type) - toggle_id(type)) / 2;
nut = toggle_nut(type);
washer = toggle_washer(type);
chamfer = t2 / 2;
thread = toggle_thread(type);
stack = chamfer + nut_thickness(nut) + 3 * washer_thickness(washer) + thickness + toggle_collar_t(type);
back_nut = thread - stack > nut_thickness(nut);
gap = back_nut ? thread - stack - nut_thickness(nut) : 0;
module stack()
washer(washer)
translate_z(thickness)
explode(20, true) washer(washer)
explode(5, true) star_washer(washer)
explode(5) nut(nut);
translate_z(-washer_thickness(washer) - (back_nut ? nut_thickness(nut) : 0) - gap - toggle_collar_t(type)) {
color(toggle_colour(type))
translate_z(-h1 / 2 - t)
cube([toggle_width(type), toggle_height(type), h1], center = true);
color("silver") {
if(toggle_collar_t(type))
cylinder(d = toggle_collar_d(type), h = toggle_collar_t(type));
translate_z(-t / 2)
cube([toggle_width(type), toggle_height(type), t], center = true);
translate_z(-h2 / 2)
cube([toggle_width(type) + 2 * eps, toggle_height(type) - 2 * inset, h2], center = true);
rotate_extrude()
difference() {
hull() {
square([toggle_od(type) / 2, thread - chamfer]);
square([toggle_od(type) / 2 - chamfer, thread]);
}
square([toggle_id(type) / 2, thread + 1]);
}
translate_z(toggle_pivot(type)) {
angle = toggle_angle(type);
l1 = toggle_paddle_l(type);
l2 = toggle_thread(type) - toggle_pivot(type);
l = l1 + l2;
sphere(d = toggle_id(type));
d1 = toggle_paddle_d1(type);
d2 = toggle_id(type) - 2 * l2 * tan(abs(angle));
d3 = d2 - (d1 - d2) * l2 / l1;
hull() {
rotate([max(angle, 0), 0, 0])
if(toggle_paddle_w(type))
translate_z(l)
linear_extrude(height = eps, center = true)
intersection() {
circle(d = d1);
square([d1 + 1, toggle_paddle_w(type)], center = true);
}
else
translate_z(l - d1 / 2) sphere(d = d1);
rotate([max(angle, 0), 0, 0])
translate_z(l2)
cylinder(d = d2, h = eps);
sphere(d = d3);
}
}
}
pins = toggle_pins(type);
rows = pins > 3 ? 2 : 1;
color("gold")
translate_z(-toggle_depth(type) - toggle_pin_l(type) / 2)
linear_extrude(height = toggle_pin_l(type), center = true)
for(i = [0 : pins - 1]) {
x = rows < 2 ? 0 : (i % 2) - 0.5;
y = rows < 2 ? i - 1 : floor(i / 2) - 1;
translate([x * toggle_pin_hp(type), y * toggle_pin_vp(type)])
square([toggle_pin_w(type), toggle_pin_t(type)], center = true);
}
not_on_bom()
translate_z(gap + toggle_collar_t(type))
if(back_nut)
nut(nut) stack();
else
stack();
}
}
module toggle_hole(type, h = 100) //! Drill the hole in a panel
drill(toggle_hole_radius(type), h);